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Chapter 1 

Introduction 

1.1. Software Development 

One of the major goals of software engineering is to enhance programming quality and 

productivity, in particular, for producing large software systems. Programming language 

design and methodology have contributed towards this goal by developing and supporting 

concepts such as modularization and data abstraction and encapsulation. The MESA 

[Mitchell 78] and ADA [DOD 80] programming languages are examples of the evolution of 

these concepts. With these concepts, programming languages can support the static aspects 

of program construction by letting the programmer, among other things, describe the modular 

interfaces of his system, localize the decisions of representation, ere. Programming 

languages lack support for the dynamic aspects of the development and maintenance of large 

software systems: system developers must deal with different versions and compositions of 

the different pieces of a syttem, as well as with the interaction of several programmers in the 

development of a system,   f / 
I I 

Programming environments may provide the necessary means to address the problems 

associated with the dynamic aspects of development and maintenance of large software 

systems. Programming environments have traditionally been considered to address only the 

problems of the development of single programs by single users [Oonzeau-Gouge 

80, Teitelbaum 81a, Ritchie 74]. Environments that in addition, address the dynamic aspects 

of the development and maintenance of large software systems are often referred to as 

software development environments [Habermann 82, Deutsch 80]. These environments 

provide facilities i jr. system version control and project management which must be 

expressed through some language [Kaiser 82]. Environments can be built in which the 

facilities for dynamic system development and maintenance can be provided through the 

_l L-J 



2 INTRODUCTION 

interaction between user and system. Since users will always be editing some language to 

accomplish their task, it being writing a program or building a system, we will use the term 

Programming environments to refer to all these environments. 

Integrated programming environments provide a single environment through which the 

programmer can accomplish his task instead of having to cnrstruct and maintain his system 

using a set of independent and unrelated tools. The dynamic aspects of program 

development will be addressed through the active participation of the programming 

environment in the development of such systems. The tools of an integrated programming 

environment understand each other's functions and objectives and can collaborate towards a 

common goal. The integrated environment has knowledge about the objects that it 

manipulates and their current state. It is therefore able to respond to incorrect or undesirable 

user actions. A common internal representation provides the means of communication 

among the tools. 

Language-oriented programming environments are knowledgeable of the language and 

thus can help anu co H"&» with the programmer in his task. In the process of creating, 

modifying and executing programs and systems, the programmer is able to concentrate on 

his algorithms and on the structure of his systems, instead of on their specific textual 

representation. 

In recent yeans, there have been some important developments in computer technology 

that make possible the development of these new systems. Better displays and terminals 

make possible the development of sophisticated display-oriented systems. With the 

. evelopment of more powerful computers, more computing cycles are available for interactive 

systems to perform computations between interactions with users and during users' think- 

time at the terminal. 

One possible way of exploiting the features of these new technology developments is by 

enhancing the current methodology for software development. This methodology typically 

consist of a set of unrelated tools: text editor, compiler, loader, debugger, ere. Each one of 

these tools performs part of the programming task. This approach has lead to the 

development of very sophisticated display-oriented text editors such as EMACS [Stallman 61] 

and UNixtm EMACS [Gosling 81a]. Within the programming task, these text editors are still 

editing text files and their interaction with users is in terms of characters, words, lines, etc. A 

__ 



I 
INTRODUCTION 3 

very limited amount of knowledge can be incorporated to provide certain expansions of 

program constructs and to provide formatting of programs automatically. However, there is 

no knowledge of the syntax and semantics of the language to insure the correctness and 

consistency of programs nor to provide immediate feedback on errors. 

UNIX EMACS goes further than just text editing by providing access to other tools through 

its interface. For example, the user can invoke a compiler to process his program, UNIX 

EMACS processes the error messages produced by the compiler and positions the user in the 

line of the file where errors occurred. However useful this features may be, they do not give 

UNIX EMACS the functionality of an integrated environment in that the tools of the environment 

do not have a common knowledge of each other and thus do not collaborate towards a 

common goal. 

A different approach is to combine a different methodology with the new technology. This 

different methodology is that of language-oriented editors, an idea demonstrated for the first 

time in the Emily System [Hansen 71]. Language-oriented editors interact with the users in 

terms of the language constructs and, in addition, can guarantee the syntactic correctness of 

programs and systems. Language here is meant in a wide sense, it is not limited to 

programming languages but to any language or structure that can be expressed with a 

context free grammar. If semantic knowledge can be incorporated, these editors can ensure 

semantic correctness and consistency or at least provide immediate feedback on errors. This 

implies that these editors actively participate with the programmer in the development of his 

programs and systems. The language in a large integrated environment can include, in 

addition to the programming language, descriptions of system structure such as the structure 

of its components, versions of subsystems, documentation, etc. Other tools of the 

environment also have knowledge of this language and it is therefore possible to integrate 

them with the editor to form an integrated environment. 

Syntax-directed editors are language-oriented editors in which the programs and systems 

are created and modified according to the syntactic structure of the language instead of 

characters and lines. Some of the important characteristics of syntax-directed «"ditcrs that 

will be considered in this thesis are the following: 

• A constructive approach to program and system building. The programmer 
concentrates on constructing his programs and systems as structures rather than 
as collections of pieces of text. Programs and systems are built through 
constructive commands.   Each command corresponds to a construct of the 
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lanQuaga. The burden of generating the concrete syntax (i.e. syntactic sugar) is 
taken over by the editor and is automatically generated. 

• Manipulation of programs and systems in terms of their structure. The focus of 
attention for all activities of the programmer is always a construct of the 
language. The prcgratrmer operates on his program or system in terms of their 
structure and not through their textual representation. 

• Abstract syntax trees. Programs are represented internally as syntax trees that 
are built by the editor from constructive commands issued by the programmer. 
These trees are abstract syntax trees, whose nodes represent the language 
constructs. The elements of the concrete representation of languages, such sä 
keywords, punctuation marks, separators, terminators, etc, are not kept in the 
tree. 

• Syntax tables. If an editor is written for a particular language, ihe syntax 
information is part of the implementation of the editor. In syntax-directed editors 
generated from language descriptions the syntactic knowledge of the languages 
obtained from these descriptions is kept by every editor in a collection of syntax 
tables. The editors use these tables to ensure the syntactic correctness of the 
programs being built 

• Unparsing. The concrete representation of structures displayed in the screen is 
obtained by unparsing the internal abstract syntax tree representation into a 
visual form. Associated with every construct of the languages, a set of rules, 
called unparsing schemes, specify the visual representation of the construct. 

• Uniform interface for the environment. The user interface of a syntax-directed 
editor provides the means for communication between user and environment. 
The user communicates with all the tools of the environment through the user 
interface of the editor. As the environment is knowledgeable of the development 
task, some of (he tools are automatically applied at the appropriate times. 

# 1.2. Goals of Thesis 

The purpose of this dissertation is to investigate the design and implementation of syntax- 

directed editors, the ability to generate and extend them, the appearance they give to the 

user, the properties of languages for which such editors are generated, the capabilities and 

the limitations of the available hardware and display devices. More specifically, this 

dissertation addresses the technical issues involved in: 

• The design of syntax-directed editors to provide a uniform user interface for 
integrated environments. 

• The automatic generation of syntax-directed editors from language descriptions, 
which was first attempted in Emily [Hansen 71] but has not been an important 
goal in other systems. 

■' 
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• The extension of syntax-directed editors to understand language semantics (i.e. 
perform context sensitive processing), through a flexible procedural approach 
instead of through seme formal specification [Demers 81]. 

• The extension of syntax-directed editors to support the development of large 
integrated environments that support the dynamic aspects of the development 
and maintenance of large software systems, in other systems [Donzeau-Gou^e 
80 Teitelbaum 61 a1 the approach focuses on the environment for a single 
programmer working on a single program. 

In order to address and un:- stanc1 these technical issues, a generator of extensible syntax- 

directeo editors has been designed and implemented. Throughout this dissertation we will 

refer to any such editor as an A .OE (A Language Oriented Editor). 

1.3. Major Design Issues 

In the design of syntax-directed editors, some of the most important technical issues that 

arise are: 

• User interface. The user interface of syntax-directed editors is extremely 
important. The usability of the editor depends, in a significant manner, on its user 
interface The user interface of a syntax-directed editor is very different from that 
of a texi editor. Most users like the flexibility provided by good text editors to edit 
their programs. For the user to accept this new methodology, the user Interface 
of a syntax-directed editor must be friendly and simple. 

• Display-oriented functionality, hardware resources ar limitations. Proper 
exploitation of new display technolngies can have a . <;at impact on the 
functionality of an interactive system. On the other hand, therj is a wide variety of 
equipment available, and design decisions must be made based on the actual 
hardware resources and limitations. 

• Separation of abstract syntax and concrete representations. One of the most 
important characteristics of the design of the grammatical doscription used to 
specify the languages, s the separation of the abstract syntax of the language 
from its concrete representation. This separation makes it possible to produce 
multiple concrete representations for every construct of the language. A large 
part of what is understood as the syntax of a language is not part of the abstract 
syntax but of its concrete representation (punctuation marks, keywords, 
separators, etc.). 

• Common internal representation. The abstract syntax trees built by the syntax- 
directed editor are the common languac «representation used by all the tools of 
the environment. This common intern represenlation provides the means of 
communication among the tools of an ir..egr3ted environment. 
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• Action Routines for context sensitive processing. In order to support an 
integrated programming environment it is necessary to provide the means for 
context sensitive oroc^ssing such as checking programming language 
semantics. 

• Language or Environment specific behavior. For a successful programming 
environment, certain functions must be tuned to the specific environment. 
Symbol table manipulation is an example of one such function. Different 
languages and environments need different functionality for their symbol table 
manipulation. It should be possible to provide this needed functionality. 

• Generic bjoiems. It is different to build a syntax-directed editor for a particular 
language than to build a generator of such editors. Some design decisions are 
influenced by this difference. In particular, design decisions must be made to 
provide solutions with general mechanisms rather than providing a specific 
solution that solves a problem for one language but not for another. 

1.4. Previous and Related Work 

The ideas of syntax-directed editing and integrated programming environments are not 

new, they have already appeared in several systems. Some of the most importan* efforts 

include: 

• The Interlisp System [Teitei-na" 78] is a very sophisticated programming system 
for LISP. The simple syntax and semantics of JSP lend themselves very well to 
more structured manipulation of programs, its interpretive nature lends itself 
better to the edit/interpret approach. Interlisp incorporates powerful facilities like 
structured editing, sophisticated debugging techniques, automatic error 
correction, the programmer's assistant and others. In this thesis we will address 
the issues involved in the development of environments for a variety of languages 
with more complex syntax and semantics. 

• The Emily System [Hansen 71] was one of the earliest efforts with syntax-directed 
editing. It is a menu-driven system in which the user constructs a program by 
s^acting BNF productions [Backus 59]. The BNF productions include the 
concrete representation of the language constructs. Emily is not an integrated 
system: in order to compile a program, text is produced and has to be compiled 
separately. Performance in Emily was not very good, there was a noticeable 
delay in the update of the screen after every interaction. For the generation of 
ALOES, a grammatical description that emphasizes the language constructs 
themselves and not some productions of certain grammar, is proposed. The 
grammatical description also makes a clear separation between abstract syntax 
and concrete representation. We want to address the support of integrated 
systems through the sharing of a common program representation and a uniform 
user interface. Current developments in computer technology make it possible to 
enhance the performance of interactive systems. 
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• MENTOR [Donzeau-Gouge 80] is a structured editor for PASCAL. The user writes 
his program as text and MENTOR parses it to create the syntax trees. The user 
then manipulates his programs structurally. Editing commands and context 
sensitive routines are written in MENTOL, a tree manipulation language that is the 
command language of MENTOR. The context sensitive routines are invoked 
explicitly by the user. MENTOR is not an integrated system either: a program must 
be unparsed into a text file before being compiled separately. MENTOR is not a 
display-oriented system, it uses a one-dimensional scroller interface. ALOE 
follows a structural approach for entering, as well as for editing structures. 
Context sensitive routines are written is C [Kernighan 78] using an 
implementation environment that includes all the primitives for tree manipulation. 
The context sensitive routines are automatically invoked at the appropriate times. 
ALOE supports integrated environments and has a display-oriented interface. 

• The Cornell Program Synthesizer [Teiteibaum 81a] is written for a particular 
language, PL/CS, a small subset of PL/I. The Synthesizer builds code trees that 
can be interpreted and unparsed. The Synthesizer achieves a high degree of 
interaction between program construction and execution, in an environment for a 
single programmer building a single program. The Synthesizer is a hybrid system 
that manipulates programs structurally at the statement level and textually at the 
expression level. In this thesis, we address the issues of generating syntax- 
directed editors for a variety of languages, with structured editing at all levels of 
the language. We also address the development of environments that support the 
c' -namlc aspects of system development and maintenance for large software 
systems with interactions of several programmers. 

Some of the important distinguishing characteristics of an ALOE, as discussed in this 

dissertation, include: 

• An ALOE is an editor generated from a grammatical description instead of being 
hand crafted for a particular language. 

• The grammatical description separates the abstract syntax structure and the 
concrete representation of the language constructs, which permits the 
specification of multiple concrete representations for every language construct. 

• Structured or constructive editing is performed at all levels of the language, there 
is no parsing performed. 

• ALOES have the ability to perform context sensitive processing implicitly through 
action routines associated with every construct of the language. 

• Environment specific functionality can be added through the redefinition of 
certain environment dependent functions. 

• The functionality of ALOES is intended for the development of large integrated 
environments, the internal representation is available as the common 
representation for other tools of the environment, and it provides the means of 
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communication between these tools. The user communicates with other tools of 
the environment through the uniform user interface of ALOE. The integrated 
environment approach has a significant impact on the overall performance of the 
system because duplication of effort is avoided and the information about the 
programs is preserved and does not have to be recomputed. 

• We tend to emphasize the generation of ALOES for programming languages and 
systems because they are their motivating application, but ALOES can be 
generated for all structures and languages that can be expressed using the 
grammatical description. An important example is the ALOE generator itself which 
is an ALOE in which the user edits language descriptions and that produces the 
language tables through the use of several unparsing schemes. Other 
possibilities include a mail system [Notkin 82a] and an ALOE for SCRIBE [Reid 80] 
a document production system. For this reason, syntax-directed editing can also 
be referred to as structured editing. 

1.5. Structure of Thesis 

The organization of this dissertation is based on the motivation and discussion of the major 

design issues, and on the evaluation of the corresponding design decisions. So, for example, 

the issue of separation of abstract syntax and concrete representation is discussed in terms 

of its impact on the user's view of the system; how it affects the generation of ALOES; its 

impact on the implementation of action routines; and its role in the development of large 

integrated environments. In the process of discussing this issue from these different points of 

view, some of the arguments and motivation may be repeated. The other major design issues, 

listed in section 1.3, are similarly discussed. 

Consequently, in chapter 2, the characteristics of the user interface and the design 

decisions involved are discussed. In chapter 3, we address the issues involved in the 

generation of syntax-directed editors. In chapter 4, the facilities to provide context sensitive 

processing and manipulation of the environment are discussed. In chapter 5, we discuss the 

issues that arise in the development of large integrated environments. In chapter 6, the 

design decisions are evaluated and a comparison is made with UNIX EMACS [Gosling 81a] and 

with the syntax-directed editors and environments mentioned in the previous section. 

Throughout the thesis, the emphasis is placed on the motivation of the design decisions, 

the discussion of alternatives and their evaluation. Detailed description and explanation of 

these aspects is not included in the main body of the thesis. Some of the necessary 

descriptions are included in the following appendices: appendix A gives a list of the editing 
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commands common to all ALOES. Appendix B describes the commands available for use in 

the unparsing schemes. Appendix C lists the specification of the routines of the ALOE 

implementation environment, which is discussed in chapter 4. 

A complete detailed description of the ALOE system is provided in the ALOE Users' and 

Implementors' Guide [Medina-Mora 81a]. The guide is structured as follows: chapter 1 gives 

a short introduction. Chapter 2 is the ALOE Users' Manual. Chapter 3 describes the ALOE 

Generator and the grammatical description rules. Chapter 4 describes the implementation of 

the internal representation. Chapter 5 explains the interface to action routines. Chapter 6 

defines the interface to extended commands. Chapter 7 provides an operational definition of 

the internal structures through a set of routines available to the implementor of an ALOE which 

can be invoked from action routines or extended commands. Chapter 8 defines the system or 

environment specific routines whose standard implementation is provided. Any 

implementation can redefine some or all of these routines. Chapter 9 describes the window 

manipulation package and how to use it. Chapter 10 describes the use of the display handling 

package. Chapter 11 explains the process of generating an ALOE once the grammar has been 

created and the rest of the system has been written. Finally, appendix I gives a detailed 

example of the implementation of an ALOE for a simple language. The example defines action 

routines, provides extended commands, and redefines some of the environment specific 

routines. 
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Chapter 2 

User Interface 

2.1. Goals of the User Interface 

One of the most important goals of the user interface of a syntax-directed editor is to make 

it possible for the user to interact with the editor in terms of the structure of his programs and 

systems. Other important goals include: 

• Minimization of effort, it should take the user minimal effort to indicate the 
actions he wants applied. Especially, it should be very easy to invoke simple and 
frequently applied operations. 

• Flexibility. The user interface should be flexible enough to respond to the needs 
of novice as well as expert users. 

• Immediate feedback to user. In an interactive environment, the user should know 
the current state of his system. This can be achieved by updating the screen after 
every interaction. In this manner, the user gets immediate feedback as to the 
effect of the action he just invoked. 

• Minimization of delay.    Any interactive system should provide an adequate 
response time. Delays between interactions should bo small. 

2.2. Syntax-Directed Editing 

One of the important advantages of a syntax-directed editor as the uniform interface of an 

integrated procramming environment is that, in the process of creating, modifying and 

executing programs and systems, the programmer is able to concentrate on his algorithms 

and program and system structure, rather than on their specific textual representation and on 

the different tools of the environment and the different languages used to communicate with 

them. 
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An ALOE car. be visualized as a constructive editor that understands the syntax of the 

language. Language constructs, such as variables, operators, expressions, statements, 

declarations, efc, can be added, modified and removed. The user communicates with ALOE 

in terms of these language constructs. The user constructs his program by inserting 

templates representing different language constructs and then filling the unexpanded parts of 

those templates with other templates. Since ALOE knows which constructs are valid at any 

given point, it allows the programmer to insert a language construct only where it is 

syntactically correct. 

In its interaction with an ALOE the user thinks of his program or system in terms of the 

language constructs and lets ALOE handle the concrete syntactic details. For example, when 

a user adds an if statement to his program, he thinks of the abstract structure of the 

construct: a language construct with a test and two statements to be executed depending on 

Lhe outcome of the test. ALOE adds all the keywords, punctuation marks, separators, 

terminators, efc, required by the language. So, instead of typing the character sequence for 

an 1 f statement in C [Kernighan 78], the user calls on the template If. 

Figure 2-1 shows the display before the construction of the if statement and the resulting 

display after its creation. The program cursor, highlighted in the display (indicated by a 

rectangle in the figure) is advanced to <expression> so that it can be similarly expanded. 

This construction was permitted because it was syntactically correct, the program cursor was 

located at a <statement> meta node indicating that only a statement could be legally 

constructed at that point. Note that ALOE provides all syntactic sugar required by the 

language like the parentheses around the <expression> construct required by the C 

language syntax. Problems such as misspelled or non-matching keywords cannot occur 

because the language constructs are inserted by ALOE and not by the typist. ALOE relieves the 

user from worrying about the concrete syntactic constraints imposed by the language. 

Internally ALOE represents the program as a syntax tree. Each template corresponds to a 

node of a certain type in the tree. The unexpanded nodes of the temphte are the offspring of 

the node. These unexpanded nodes will be referred to as meta nodes. They will be filled in 

with subtrees representing their expansion. Terminal nodes correspond to the terminal 

operators of the language (variables, constants, efc). Non-terminal nodes correspond to 

non-terminal operators and are of two types: fixed arity nodes with a fixed number of offspring 

and lists with a variable number of offspring. For a complete desc: iption of the internal 

representation of ALOE see [Medina-Mora 81a]. 
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struct tract •a(ld(struct fract »frl,  "frZ) 

{ 
struct fract •tr3; 

<stat9(nent> 

p«turn(fr3); 

struct fract •add(struct fract »frl, "frZ) 

{ 
struct fract »frS; 

<expross1on> If ( 
<statement> 

•Is« 
<statam«nt> 

return(^r3); 

} 

Figure 2-1:  Construction of an IF statement 

The user actually constructs and manipulates a program tree without necessarily being 

aware of it. However, it is desirable for the user to think of the program in terms of the syntax 

tree instead of the displayed text. To display the text of a program to the user, ALOE uses an 

unparser that translates the syntax tree into text. As part of its task the unparser formats the 

program. The unparsing process is driven by unparsing schemes specified in the grammatical 

description. These schemes describe the mapping from the abstract syntax to the concrete 

representation for every language construct. The clear separation of abstract syntax and 

concrete representation places the emphasis on language constructs and not on specific 

syntactic details. 
« 

Many design decisions of a user interface are determined in a significant manner by the 

characteristics of the input and output devices chosen for an implementation, as well as by 

the baud rate of the communications line. The design space of input devices includes 

keyboards with different characteristics and different kinds of pointing devices. Keyboards 

can include special characters (e.g. control characters, meta characters, efc), function keys, 

cursor pads, efc. 
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The design space of output devices ranges from simple scroller interface (hardcopy 

devices and display devices used as such), to the use of displays as two-dimensional devices, 

to sophisticated graphic displays. Display's characteristics can also include several fonts and 

highlighting capablities. 

For the implementation described in this dissertation we have chosen the ConcepMOO 

terminal [HDS 79]. Its keyboard includes control characters, function keys and cursor pad. 

The display is used as a two-dimensional device. It includes highlighting capabilities as well 

as mechanisms, such as character and line insert/delete, which facilitate the fast update of 

the screen. 

2.3. Area Cursor 

To provide immediate feedback to the user, at any point in the interaction ALOE displays the 

current state of development of the program. The program cursor, i.e. the position in the 

program tree where the next command will be applied, must be indicated in the display. 

Taking advantage of terminal hardware facilities, ALOE uses an area cursor. ALOE highlights 

(in reverse video, for example) the textual expansion of the whole subtree. This mechanism 

also helps in emphasizing the structure of the program and provides an excellent feedback to 

the user: when at a statement, the whole statement is highlighted, when at an expression, the 

whole expression is highlighted. 

Some systems, such as the Synthesizer [Teitelbaum 81a] use a single character cursor to 

indicate the program cursor. In some cases a single character is not enough to indicate the 

current program structure that the cursor represents: it is ambiguous. In the Synthesizer 

there is only one case of ambiguity of the single character cursor. It is described in section 

6.8.1, but this is not necessarily the case in general. In ALOE, the cursor can be placed at a list 

to refer to the entire list. In this case the single character cursor would be ambiguous because 

the cursor would be placed under the first character of the first element of the list and it would 

not be clear if it refers to that element or to the entire list. This situation does not arise ir the 

Synthesizer because the cursor can only be placed at elements of lists and not at the entire 

list. When an editing command is applied to a list, the extent of the list must be explicitly 

specified. When the cursor is used at run time, to trace the program as it is executed, the 

cursor is changing positions very rapidly and a single character cursor may be better in this 

case [Teitelbaum 81b]. If the grain for tracing is not too small, for example, tracing only 

statements and not expressions, the area cursor is also acceptable [Feiler 82a]. 
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An alternative would be to use a two character cursor [Barstow 81 j: the first and the last 

character of the subtree expansion. This solves the ambiguity problem but does not 

necessarily emphasize enough the structural view of the program. 

The textual expansion of the Internal tree representation is controlled by the unparsing 

schemes. If a particular operator's unparsing scheme does not include any text (aside from 

the text generated by its offspring), it could cause some ambiguity in the display. It is up to 

the ALOE implementor {i.e. the writer of the grammatical description for an instantiation of an 

ALOE), to make sure that all operators have some text in their unparsing scheme. This 

ambiguity problem is independent of the type of display chosen for the program cursor. It is 

frequently found in the cases of lists with one element, in general, the list operator itself does 

not add any extra text to the text produced by the single element. This problem is recognized, 

and cursor movement, discussed in section 2.4.2.1, takes it into account. 

2.4. Command Language 

Every ALOE has two different types of commands: editing commands and language or 

constructive commands. Editing commands are common to all ALOES. They are used to 

invoke language independent operations such as program cursor movement, read and write 

from files, insert, delete and modify subtrees, etc. Constructive or language commands are 

the names of the language constructs (henceforth referred to as operators of the language) 

defined in the grammatical description of every language. 

Editing and constructive commands are specified using different naming conventions, so 

that the ALOE implementor can select good mnemonic names for the language operators 

without having to worry about naming conflicts with the "names of editing commands. This 

also allows for extensions to the set of editing commands independently of any language. 

Extended commands can be added to an ALOE to implement language or environment 

specific operations. The interface of extended commands is the same as .for editing 

commands. 

For any ALOt: command the user only has to type the minimum number of characters 

needed to specify the command. This design decision helps achieve the goat of minimization 

of user effort. 
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2.4.1. Constructing or Language Commands 

The names of constructing or language commands are the names of the operators of the 

language defined in the grammatical description. Figures 2-2 and 2-3 illustrate a sample 

editing session for the process of constructing a for statement in C [Kernighan 78]. The first 

column gives the commands typed by the user, the second column shows how the terminal 

display would appear after the command is executed and in the third column the syntax tree 

structure being built is presented. 

When the ALOE implementor is choosing names for the operators of the language, he must 

be aware that he is designing part of the user interface of the editor, he is choosing the names 

for the constructive commands too. In the grammatical description, operators are grouped 

together in classes. Every class contains the set of valid operators that can replace a meta 

node of a particular offspring of a non-terminal node. Within any class the set of operators 

should not have names with common leading characters, so that the user can type few 

characters (one would be best) to specify tho command, but the ALOE implementor must 

choose the names so that they are mnemonic {i.e. their name indicates unambiguously what 

they stand for). 

Another characteristic of the grammatical description that impacts the user interface is its 

flat structure as opposed to the hierarchical structure of traditional BNF formalisms [Bacl"« 

59]. For example, at the expression level, any operator can be applied directly without having 

to apply intermediate operators such as term and factor which would be necessary with a 

hierarchical definition. Precedence values are associated with the operators to be able to 

generate the correct parenthesization of expressions. One of the early efforts with syntax- 

directed editing [Hansen 71] uses a mooified BNF formalism in which non-terminal operators 

at the expression level are at the same level, but terminal operators such as variables and 

constants are not. It is necessary to go through one extra hierarchical level to construct 

simple expressions such as 'a + b'. A more detailed comparison with traditional BNF 

formalisms can be found in section 3.2.9. 
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Typed 
by 

User 
Display Syntax    Tree 

L for (    <exp>    ;  <»xp>;  <«xp>) 

<sut> 

FOR 

<txp> <9xp> <exp) <stat> 

for (    <«xp>    • <exp>;  <9xp>;  <«xp>) 

FOR 

ASSI6     <9xp>     <«xp>     <$t«t> 

<stat> A 
<0Xp> <«Xp> 

FOR 

for (1 • <exp> ; <«xp>: <«xp>) 

<$tat> 

ASSIG     <exp>     <9xp>     <stat> 

1 <«xp> 

for (1*0;  <exp> 

<stat> 
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A 
FOR 
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Figure 2-2: A Sample Editor Session 
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1    sum  <exp> 
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for ( 1 » 0; 1 < n; 1++ ) 
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for  (   1   »  0;   1 < n;   1++  ) 

sum • sum + arr[1]; A A 

Figure 2-3:  A Sample Editor Session (continuation) 
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2.4.1.1. Synonyms 

One important impact on the dual role of grammar operators as constructive commands is 

jiat, for some constructs of the lanr-uage it is natural to think of them in terms of their name; 

such is the case of constructs like while or for statements. Bu» there are other, such as 

plus and loss-than for which a more graphical representation would be better for a 

command name. To address this problem the concept of synonyms for language operators 

was introduced. These synonyms are specified as part of the grammatical description. The 

user can invoke a command by typing its name or its synonym (the characters '+ ' fnd '<" 

would be the synonyms of the examples cited above). It was found that this addition greatly 

improved ALOE'S user interface. Users thought that it was extremely cumbersome to build 

expressions using names such as plus. After synonyms were introduced users felt that 

constructing expressions was much easier. 

2.4.1.2. Lexical Units 

Some terminal operators have values associated with them. For example, the name of a 

variable, the value of a constant, efc, ALOE piompts for these values whenever the user 

applies the corresponding command. 

ALOES do a very limited form of automatic lexical analysis for terminal operators by 

distinguishing between variables and different types of constants. Action routines can 

perform some form of lexical analysis by validating or rejecting the associated values of 

terminal operators given by the user. 

An important improvement can be made to the user interface by making ALOE understand 

about lexical units. The current set of terminal operator types in the grammatical description 

includes variables and constants. A better set of constant operator types, such as integer, real 

and character constants, can be incorporated. A lexical routine would be associated with 

each one of these types for recognition. The ALOE implementor could redefine any one of 

these routines to accommodate special language characteristics. For the classes that 

contain an operator of one of these types (e.g. the expression class), the ALOE generator 

could ensure that all operators of the class have a non alphanumeric synonym. When the 

program cursor is at a meta node that corresponds to such a class, the lexical routines would 

be invoked to identify a command as one of these constant operators types, if one is 

successful, the corresponding terminal operator would be invoked and the command string is 

given as the associated value. 
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This suggested improvement is equivalent to requiring that the operators of these classes 

have non alphanumeric names (e.g. to have '+' as the operator name instead of PLUS), or that 

full names be used to specify them (for operators such as MOO and OIV in PASCAL [Jensen 

74]). Section 3.2.2.1 contains further discussion of lexical analysis issues. Section 

3.2.7 further discusses synonyms for language operators. 

2.4.1.3. Screen Update 

ALOE updates the Jispiay after every command is applied. With bandwidth limitations it is 

often desired to issue several commands before an update. In ALOE several commands can 

be typed in a single line of input. ALOE then applies each command, one at a time. The 

display is updated only after the application of the last command. This also eliminates 

intermediate states that could be distracting. Drawbacks of this approach are especially 

evident when there are errors caused by a command and the rest of the commands must be 

flushed or applied out of context. A better interface would let the user edit the command line 

after the error, avoiding both problems. 

An alternate solution is to provide an explicit command to update the screen. There are 

two important drawbacks to this approach. First, it requires more effort from the user by 

having to explicitly invoke this command every time an update is desired. Second, the display 

will not reflect the current state of the program which is an important goal of interactive 

systems. 

2.4.1.4. Cursor Movement 

After every constructive command, ALOE moves the cursor to the next meta node, thus 

guiding the usar in the construction process by placing the cursor in the next available node 

for e oansion. During program construction this may be the desired behavior, but during 

program editing it may not be: if the program is already complete then the result is 

acceptable, the cursor is kept at the current node, but if there is an unexpanded node in an 

jnrelated section of the program. ALOE moves the cursor to an undesired location, causing 

confusion to the user. Instead, it is desirable that the cursor be kept in the iminediate context. 

There are several ways to solve this problem. First there is the .back command that moves 

i cursor from its present location to the previous one (ser section 2.4.2.1).  The second 

solution is that ALOE interprets the command terminator to indicate the action to take. There 
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are two different standard command terminators, the normal one (a CR) indicates that ALOE 

should move the cursor to the next meta node, the second one (a LF) indicates that ALOE 

should leave the cursor at the resulting node after the command is applied. There are two 

important drawbacks to this solution. First, the user will not always remember to type the 

second command terminator, and second, with multiple commands in one line there is a need 

for two command separators, which makes the command interface more confusing. 

Any cursor movement command can also be used as a command terminator, as is also the 

case in the Synthesizer [Teitelbaum 81a]. The cursor will then be placed at the corresponding 

node after applying the cursor movement command. This feature is hardly ever used in 

practice in ALOE; in the Synthesizer it is important because it provides the transition between 

text editing of phrases and structured editing: when a user is at a phrase it should not matter if 

he just entered it or he moved the cursor there, in any case a cursor movement command 

should be applicable. 

The third solution, and possibly the best, is the definition of constructing and editing modes 

of operation. While in constructing mode. ALOE move ■ the program cursor to the next meta 

node. In editing mode it moves the cursor to meta nodes only within the newly created 

subtree in case of a construction of a non-terminal operator, and moves to the next node 

(meta node or not) after the creation of a terminal operator. That is, the search for meta node 

is restricted to the current subtree. These three solutions are not mutually exclusive. They ail 

are available in any ALOE. Section 2.7 contains further discussion on the different modes of 

operation of an ALOE. 

There can be classes in the grammatical description that contain only one non-terminal 

operator. When a meta node for these classes is created, ALOE will automatically apply the 

operator, thus saving the user the need of invoking it explicitly. If the only operator of a class 

is a terminal operator, automatic application is not performed because this requires the user 

to specify also the value of the operator (e.g. the name of a variable, the value of a constant, 

ere), and the user may not want to instantiate those terminals yet. Automatic application 

could be extended to terminal operators that do not have values associated with them (e.g. 

static terminals used for predefined type names of a language, such as 1nt,  f 1 oat, efc). 
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2.4.2. Editing Commands 

Editing commands are used to invoke language independent operations such as program 

cursor movement, read and write from files, insert, delete and modify subtrees, display 

manipulation, efc. In this section we discuss the interface of editing commands as well as 

some of the more interesting commands. For a complete list of ail editing commands and 

their functionality see appendix A. 

As discussed before, editing and constructive commands are specified using different 

naming conventions. Editing commands are prefixed with a period ("."). This solution 

achieves the purpose for which it was designed but does not necessarily provide a good 

interface for an expert user. The user has to type at least three characters (the dot, at least 

one character for the command and a command terminator) to specify any editing command. 

To improve this, the use of ASCII control characters as synonyms for editing commands was 

introduced, taking advantage of the fact that language commands will not use control 

characters in their names. Experience with the use of control characters for commands has 

been good with text editors such as EMACS [Stallman 81]. To experiment with these decisions 

and to provide the flexibility necessary for different kinds of users, both forms are available in 

an ALOE: sometimes it is easier for a user to remember a command by its name than by its 

control character synonym. 

Users go through a learning process of the command language. Again, experience with the 

use of EMACS [Stallman 81] supports this hypothesis: once the user learns the command 

equivalences, he will not need to refer to their name. To provide the necessary flexibility, a 

help facility displays both names and synonyms of commands. The considerable savings of 

keystrokes (a command terminator is not needed, neither is the '.') makes the learning effort 

worthwhile. In EMACS, the user may decide the binding of control character keys to editing 

commands. Some users may want to decide a binding that helps them remember the 

commands much easier, or to bind certain commands of their preference (there are more 

commands than keys available). On the other hand, this causes the creation of many 

individualized and incompatible editors. 

We have used the cursor pad function keys to invoke the program cursor movement 

commands with great success. We have not yet fully explored the use of other terminal 

function keys to invoke editing commands. This is a possibility explored with success in some 
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other systems such as the Synthesizer [Teitelbaum 81a]. The only big problem of using 

function keys is that any terminal keyboard has a limited set of these keys and this could 

preclude making extensions to the set of editing commands. Given this limitation, terminal 

function keys should be used for the most common editing commands. 

2.4.2.1. Cursor Movement 

Cursor movement is not done following the textual representation of the program (as most 

programmers are used to with text editors), but rather following the structure of the program, 

reflect'ng the result of the move by highlighting the new program cursor. There are five basic 

cursor movement commands defined in an ALOE: 

• Cursor out: Moves the cursor one level up in the program tree (to the parent 
node). If the cursor is at an element of a list with only one element, ALOE moves 
the cursor past the IM node that represents the whole list. This feature was 
added to the original design of ALOE because in most cases the highlighted area 
in the display does not change when moving to the list node, and it was very 
confusing. The change was found to be extremely helpful: it is always clear 
where the program cursor is. 

• Cursor in: Moves the program cursor one level down in the tree. Moves it to the 
first offspring in a fixed arity node or to the first element of a list. If the cursor is 
moved into a list node, and the list has only one element. ALOE moves the cursor 
to that element. In this manner cursor movement is symmetric with respect to 
lists. If the cursor is at a terminal node it has no effect. 

• Cursor next and cursor previous: Move the program cursor to the next or 
previous sibling if one exists. If not, they move it to the next or previous sibling of 
the parent node recursively. One problem with the cursor next and cursor 
previous commands is that they are not symmetric. A cursor next command 
followed by a cursor previous command does not necessarily move the cursor 
back to the original position. 

• Cursor home: Moves the program cursor to the roof of the current window or 
context. It is equivalent to a series of cursor out commands. If the current node 
is a root itself, it moves the cursor to the root of the previous window in the 
context window stack (see section 2.6). It, of course, has no effect if applied at 
the system root. This command lets the user move more rapidly out of contexts. 

All these cursor movement commands can take a numerical argument which specifies the 

number of times that it should be applied. This helps the user move faster through the 

program. This basic set of cursor movement commands can be naturally extended with two 

other cursor movement commands that would move the cursor following a preorder traversal 

of the tree. These commands would be symmetric and the user could move the cursor to any 
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place in his program by using repetitions of the same Key. This form of cursor movement has 

been successfully used in the Synthesizer [Teitelbaum 81a]. In fact, the Synthesizer has 

thirteen different cursor movement commands. A user must type several cursor movement 

commands to move from one place tc another in his program. The same is true in ALOE, and 

as long as the system response is fast enough, with practice the user rapidly gets used to 

typing several cursor movement commands consecutively to get to the desired node. 

There are three other important cursor movement commands: 

• .find: This command lets the user move rapidly to nodes that are not very close 
to the current node. Very helpful when the desired node is not currently 
displayed. The .find command restricts the search to the current window (see 
section 2.6) and wraps-around the root to search for nodes that appear before the 
current node. 

ALOE lets the user specify a search pattern (a string) and moves the cursor to the 
first node that matches the string. On terminal nodes (constants, variables, metas 
efc), a substring match is done with the associated value of the node. On non- 
terminal nodes the match is done with the names of the corresponding operators 
and their synonyms. So, it is possible to search for variable names, constant 
values and names of meta nodes as well as for 1 f or wh 11 e statements. 

• .back: Moves the program cursor back to its previous position, provided that no 
change has been made that invalidates that position. For example, if a node has 
just been deleted, the previous cursor position no longer exists. The .back 
command is very helpful in situations where the result of another cursor 
movement command was not the desired one. 

• .window: This command is used to move from one program window to another, 
or to move to and from clipped area windows (see section 2.6). Every window has 
a program cursor associated with it. Applying this command, implicitly indicates 
a cursor movement to that window's cursor. 

The Synthesizer [Teitelbaum 81a] has no searching commands, all cursor movements must 

be done with one of the explicit cursor movement commands. Even if response from the 

system is fast, this may not be appropriate for large programs where it would require too many 

cursor movement commands to get to nodes that are not close to the current node. 

In MENTOR [Donzeau-Gouge 80], cirsor movement and searching is performed using 

MENTOL, a tree manipulation language that is the command language of MENTOR. Complex 

tree pattern matching can be performed in MENTOL to perform searching. In some cases it is 

very cumbersome to express the pattern to look for, when a simple string match would be 
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easier to express as it is done in ALOE. For further discussion on the comparison of ALOE with 

these and other syntax-directod editors see section 6.8. 

A pointing device cuuld also be used to indicate cursor movement by moving it to different 

locations on the screen. Emily [Hansen 71] used a light pen pointing at the screen to indicate 

cursor movement. In order lo do this, a mapping between tree nodes and screen positions 

must be made. This information is available when the node is unparsed and could be stored 

with the tree node. 

The highlighting of the program cursor and the cursor movement commands strongly 

emphasize the structure of the program. For new users this is extremely useful in helping 

them to deal with their programs structurally instead of textually, especially for those that have 

used text editors. 

Display Syntax Tree 

while ( <axp> } 

max  :■ value; 

WHILE 

<axp> ASS IG 

max value 

while ( <exp> ) 

If (  <exp>  ) 

max  :• value; 

WHILE 

<exp> IF 

<exp> ASSIG 

max value 

Figure 2-4:  Nesting an assignment statement into a if-then statement 
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2.4.2.2. Tree Manipulation Commands 

A set of basic tree manipulation commands is provided as part of the editing commands of 

an ALOE. These commands are very important because they address the issue of editing 

structures in syntax-directed editors which has been traditionally considered one of its 

problems. The basic set of tree manipulation commands include: 

• .clip and .insert used to copy and move subtrees. Clipped subtrees are kept on 
a separate clipped area where they can be inspected and edited. 

• .delete and .replace used to delete subtrees. The .replace command leaves a 
meta node in the place of the deleted subtree. 

• .nest and .transform are very important because they make editing structures 
much easier and contribute towards making structured editing much more 
attractive. The .nest command makes a new subtree in the place of the current 
one with the current subtree as offspring of the new root provided that the 
resulting subtree is a legal one. Figure 2-4 shows the effect of nesting an 
ass 1 gnmant statement into an 1f-then statement. 

The .transform command changes the operator of the current subtree root 
provided that the transformation is a legal one. Figure 2-5 shows the effect of 
transforming am 1f statement into a while statement. This kind of example is 
often used to show the difficulties of editing structures in syntax-directed editing 
because normally it can only be done with a sequence of .clip, .delete and 
.insert commands [Teitelbaum 81a]. The Synthesizer has been extended to 
support some transformations [Teitelbaum 82]. 

2.4.3. Extended Commands 

As every ALOE is generated for a different language to form an environment, there is a need 

for some language or environment specific behavior. One way of achieving this behavior is 

through the introduction of extended commands to implement language or environment 

specific operations. The format of extended commands is the same as editing commands: 

the command name is prefixed with a period (".") and control characters are used as 

synonyms. It is important to select the names of extended commands so that they do not have 

common leading characters with the names of editing commands. Their control character 

synonyms should also be different from those of the editing commands. 

Typical uses for extended commands include commands to communicate with other tools 

of the environment through the uniform user interface of ALOE (e.g. communication with the 

run-time environment through .run and .continue commands), commands to perform 
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Display 
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Figu re 2-5: Transforming an IF statement into a WHILE statement 

language or environment specific searches (e.g. a .find-spec command to locate the 

specification of a procedure), efc. For further discussion and examples of extended 

commands see section 5.2.1. 

2.5. Multiple Unparsing Schemes 

The structure and format of unparsing schemes is discussed in section 3.2.5. In this 

section the discussion focuses on their impact on the user interface. Unparsing schemes 

specify the mapping from the internal program representation (defined by the abstract syntax) 

to the concrete textual representation used for display. In ALOE we can specify several of 

these mappings for every language operator, thus providing a facility for multiple views of the 

sams program. Unparsing schemes are specified by the language designer in the 

grammatical description of the language. 
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The ability to specify multiple unparsing schemes is obtained because of the clear 

separation of the abstract syntax and the concrete representation of the language operators 

in the grammatical description. If traditional BNF [Backus 59] (or a variant) had been used, 

this would not have been possible because in BNF the concrete representation is part of the 

syntactic specification. 

2.5.1. Different Abstraction Levels 

The ALOE implementor can specify different levels of abstraction (or different levels of 

detail) for the program. The user sees these different views of the program when the current 

unparsing scheme is changed. The internal program is the same. 

Structured editors for LISP [Teitelman 78], use the concept of depth of the tree to present 

to the user different levels of detail, while eliding the rest of the program. MENTOR 

[Donzeau-Gouge 80] uses the same concept for e//s/on or holophrasting applied to algebraic 

languages. The drawback of this design is that program structures that are at the same depth 

are not necessarily at the same level of abstraction, wnich then results in many instances in 

which too much or too little detail is given to the user. 

Holophrasting was used in Emily [Mansen 71] as an abbreviation mechanism for a node. A 

holophrast of a node consisted of the leading portion of its textual expansion together with 

some distinguishing marks to indicate it. Holophrasting was a property of a node. The 

Synthesizer [Teitelbaum 81a] achieves a similar effect through the use of comment 

statements. When the e//s/on command is applied to one of such statements, the comment 

part is displayed in the screen and a set of dots replaces the expansion of the statement. In 

both cases elision is controlled explicitly on a node-by-node basis, no depth value is used. 

The PDE system [AIberga 81,Mikelsons 81] uses a very sophisticated algorithm that 

assigns weights to different nodes in the tree according to their relevance to decide which 

ones will get unparsed given the size of the screen. The algorithm is evaluated for every 

redisplay and changes the weights for different abstraction levels. This causes an alteration 

of the display after every cursor movement, which could be very distracting and could cause 

some delays in the updates. 

With multiple unparsing schemes in ALOE, the language designer has the ability to specify 
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the different abstraction levels. He indicates, for every different scheme, which nodes get 

unparsed, and how. One good example is the development of unparsing schemes to show a 

procedure call cross reference in a program. All the information in the program is ignored 

except for procedure calls. In this manner, the desired abstraction level is achieved. 

2.5.2. Pretty Printing and Syntax Variation 

Since the unparsing scheme language includes commands that support indentation, 

column positioning, etc., pretty,printing of programs can be done automatically. With multiple 

unparsing schemes, different pretty printing styles can be specified. 

A good example of the use of multiple unparsing schemes can be found in ALOEQC. The GC 

language [Feiler 79] is s variant of C [Kernighan 78] with a different syntax for procedure 

specification. The abstract syntax of both languages is identical, so ALOEGC has an unparsing 

scheme to unparse GC programs with C syntax. Figure 2-6 shows a procedure specification 

unparseo first with GC syntax and then with C syntax. 

boolaan answ«r($truct frsct «fpl,  »frZ; char op) 

boolean  answsr(frl,  fr2,  op) 
strurt fract »frl.   »trZ; 
char  op; 

Figu re 2-6: Two different unparsings of a GC procedure specification 

Aloegen, an ALOE used to construct an edit the grammatical description, produces a set of 

tables written in C [Kernighan 78] which constitute the syntax tables used by a generated 

ALOE. These tables are produced entirely through the use of many different unparsing 

schemes. More examples of different uses for multiple unparsing schemes can be found in 

section 5.2.8. 

2.5.3. Language Translation 

Another example exploits the similarities of GC and PASCAL [Jensen 74]. A large 

percentage of GC and PASCAL have the same structure, so it is possible to have an ALOEGC 

witn unparsing schemes to show PASCAL syntax for those constructs that have the same 
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struct imployee 
{ 

char nams[64]; 
int ssn; 
int salary; 

}: 
1nt maxsalary(struct employe« payroTi[512]; Int num) 

{ 
Int i; 
int max; 

max • -I; 
for (1-0; 1 < num; ++1) 

If (payroll.sa1«ry[li > max) 
max • payroll,salary[1]; 

return max; 

MODULE example; 
EXPORTS 

TYPE employee • RECORD 
name : ARRAY [0..64-1] OF CHAR: 
ssn : INTEGER; 
salary : INTEGER: 

END; 
FUNCTION maxsalaryCVAR payroll : ARRAY [0..512-1] OF employee: 

num : INTEGER] : INTEGER; 

PRIVATE 

TYPE employee • RECORD 
name : ARRAY [0..64-1] OF CHAR;  ' 
ssn : INTEGER: 
salary : INTEGER; 

END: 

FUNCTION maxsalary(VAR payroll : ARRAY [0..512-1] OF employee; 
num : INTEGER) : INTEGER; 

VAR 1 : INTEGER: 
VAR max : INTEGER: 

BEGIN 
max :• -1: 
FOR 1 :- 0 TO num-1 DO 

IF payroll.salary[1] > max THEN 
max :• payroll.salary[1]; 

BEGIN 
maxsalary :• max; 
EXIT(maxsalary) 

END 
END; 

Figure 2-7:  A small program unparsed with GC and PASCAL syntax 

structure [Feller 82b]. The equivalent effect can be achieved in an ALOEpASCAL. Figure 

2-7 shows an example of a small program unparsed first with GC syntax and then with PASCAL 

syntax. A similar effect could be achieved for common subsets of ADA and PASCAL [Albrecht 

80]. 
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2.6. Screen Organization 

One of the major limitations imposed by the terminal is the screen size (typically 24 lines by 

80 characters, for the kinds of terminals selected). There is a large amount of information that 

needs to be displayed and not enough screen space is available for it. The screen 

organization then becomes extremely important for the user interface. 

In any ALOE there are many different kinds of information that are displayed to the user. It is 

very important that users always have a clear picture of the system state. This is specially true 

with new users that will be faced with a totally different system from the ones they are used to. 

Information of a particular should always appear in the same place in the screen. 

The ALOE interface divides the screen in different sections (called windows). To take full 

advantage of the terminal capabilities and to be able to display all the information needed, it is 

very important to have a sophisticated window interface with different kinds, sizes and 

functionality of windows. The different kinds of information are then displayed in these 

windows. In most cases the sizes and distribution of these windows can be modified by the 

user; however, every ALOE provides a default window layout, which is normally sufncient 

Figure 2-8 shows the distribution of the different windows and the different kinds of 

information in a typical screen layout of an ALOE. Windows limited by dotted lines in the figure 

are normally only displayed in the screen when a specific request is made for the information 

that is displayed in them. The clipped and help windows are typical examples of these 

windows. In simple ALOES debugging and user I/O windows will never appear. A detailed 

description of the display and windowing characteristics of an ALOE can be found in 

[Medina-Mora 81 a] and [Feiler 81]. 

ALOE organizes the different kinds of information as follows: 

• Command input. There is a command window which is two lines long and is 
normally placed at the bottom of the screen. The first line of it is used for echoing 
command input from the user. 

• Last command. In the second line of the command window, the full name of the 
command just invoked by the user is displayed, while ALOE is waiting for a new 
command to be typed. For novice users it is helpful to show the commands that 
they applied so that they can learn to associate the commands with their effects 
on the programs. It is also very useful when a command is typed In error. 

• Prompts from the system. Sometimes ALOE needs to prompt the user for values 
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Progrwni 

Documentation 

He'p Information 

Clipped Subtrees 
Debugging 

Information 

User Program Input/Output 

Context Stack 

Status 

Command Input 

Prompts    and    Messages from System 

Figure 2-6:  Screen Organization in an ALOE 

(e.g. the name of a variable, the value of a constant, the name of a file, ere). The 
second line of the command window is used for prompts. The command typed by 
the user is still in the first line of the command window, so a novice user can 
understand the need for the prompt. 

• Messages from the system. The second line of the command window is also 'sed 
for different types of messages that the system displays at various times. These 
include system errors (e.g. when an inconsistency is discovered), other system 
messages (e.g. confirmation that a file was successfully written) and messages 
from action routines and extended commands. The error interface for action 
routines and extended commands (see section 4.5) combines the display of the 
message with .he highlighting of the node associated with the message. 

* Programs. The concrete representation of the internal abstract syntax tree is 
unparsed into program or free windows. ALOE maintains a stack of such windows 
(referred to as context stack). It is useful to divide the program data base into 
different contexts so that only the current context is displayed at any moment. 
Previous contexts are stacked and can be accessed through the cursor home 



USER INTERFACE 33 

command or the .window command (see section 2.4.2.1). Because of the 
restricted screen space, every context window is overlaid in the same area of \hr 

screen. 

As the user attempts a cursor out command at the root of a context window, ALOE 

makes an action routine call to let the action routine pop the context window 
stack and make ALOE display the previous context. A similar situation occurs 
when a cursor in command is attempted at a node whose offspring are not 
unparsed (i.e. they are not visible), the action routine can then change the 
unparsing scheme into one that would unparse the offspring ana push a new 
context window into the stack. This can be also visualized as an opening of a 
new context or level of abstraction. 

• Clipped subtrees. The .clip command is used to copy subtrees from the program 
tree into a scratch area called the clipped area. Clip windows are used to display 
clipped subtrees. The cursor can be moved to a clipped subtree using the 
.window command (see section 2.4.2.1). The user can then edit the clipped 
subtree before moving it for insertion elsewhere in the program. The clip window 
usually appears at the bottom of the program window (sharing part of it) and 
disappears as soon as the cursor is moved back to the program window. Only 
one clipped subtree can be displayed at a time. 

• Status information. A one line status window is used to display the status of ALOE. 

This information includes the name of the operator that corresponds to the 
current node, the class it belongs to, the name of the current context window and 
the settings of the various modes of ALOE. This status information is extremely 
helpful to novice users because it helps them understand more rapidly both, the 
behavior of ALOE and the structure of the corresponding language. The status 
window is shown in reverse video and is normally placed between the program 
and command windows, serving also as a convenient window separator betweer. 
them. 

• Context stack window. When different contexts are stacked, it is very useful to 
see the content«? of the stack. The context stack window is a one line window that 
is displayed if there are nested contexts. The context stack window is also shown 
in reverse video and is normally placed above .tie status window taking one line 
away from the program window. 

• Help information. The help window is used to display the names of all tne legal 
operators and their synonyms when the current node is a meta node. It is also 
used to show the names of editing and extended commands. The user ca.i 
request this help information explicitly by typing the .help (or ?) command. It will 
be automatically displayed when the novice mode is set (see section 2.7). When 
help information is not being displayed, the help window is normally overwritten 
by the program winoow. 

• Documentation. The program or tree window can also be used to display long 
pieces of documentation text (defined in the grammar as text constants, see 
section 3.2.2.1). The document operators can be defined in the grammar to open 
a new context so that they can be displayed separately from the program. 

Li. 



34 USEh INTERFACE 

• Debugging information and other information about the programming 
environment. An ALOE implementor can also define an additional set of windows 
for displaying other types of information. In the GANDALF environment, 
debugging information (see section 5.2.5), such as the monitoring of variables is 
displayed on a special monitor window. 

• User Program I/O. If the ALOE is a programming environment in which a user is 
going to run programs, a separate section in the screen is needed for the input 
and output of user programs. A user window can be allocated for these 
purposes. The ALOE implementor can then use tho windowing capabilities of the 
ALOE implementation environment (see section 4.d) to provide the user program 
with I/O capabilities. Normally the user window will use a small part of the screen 
t -use it is desired of it to coexist with the program window that displays the 
u.       ogtam that is generating the output or requesting the input. 

After every interaction with ALOE the screen is updated to reflect the new state. If the 

communication line baud rate would be large enough to allow instant redisplay, the ALOE 

would simply redisplay the screen image even* Hme. Since this is not the case in general, it is 

important to have ar« intelligent display interface that would update the screen as fast as 

possible using the terminal capabilities to update only the parts of the screen that have 

changed. To this end. ALOE uses the display package developed for UNIX1"1 EMACS [Gosling 

81 a. Gosling 81b]. The package uses an optimal algorithm for redisplaying the screen every 

time it changes. 

Better displays could clearly be exploited to provide an improved screen organization. The 

current system has been developed for a Concept-100 terminal [HDS 79]. Displays with 

similar characteristics could also be used with similar results. 

One of the first improvements would be to take advantage of terminals with larger screens 

or with additional local memory. Several screen images could be stored in the terminal's 

memory, so switching from one screen image to another would be instantaneous. This 

capability could be used to help solve the problems, discussed above, related to switching 

between different displayed contexts, to the coexistence with user program I/O as well as to 

provide a larger window size for several of the above mentioned winrhws. 

Beyond this, terminals with rcster scan displays are more suitable fc windowing and 

distribution of different kinds of information [Teitelman 77, Sproull 79, Ball 80, Ball 81]. The 

use of these kinds of displays would greatly improve the user interface (and the usability) of 

ALOES. 
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With respect to user input to ALOES, the current system only supports keyboard input. 

Although the use of control characters and function keys has greatly improved the user 

interface, a pointing device, such as a mouse, coupled with the display's improvements 

discussed above would make possible the use of menus that have been used successfully in 

jr interactive systems [Teitelman 77, Lampson 79, Ingalls 78]. 

2.7. Modes of Operation and User Profiling 

One goal of interactive systems is to have enough flexibility to be able to deal efficiently 

with the different levels of expertise of their users. Novice users should find it easy to learn 

how to use the system. Experienced users should be able to achieve what they want to do 

without an excessive effort demanded from them. 

For these purposes every ALOE operates in two different modes: novice and expert mode. 

In novice mode a help window is constantly maintained and is used to display the list of 

language commands available to the user. After every command is given the help list gets 

updated accordingly. In expert mode no continuous help is maintained, but the user can ask 

ALOE to display the help window whenever it is needed, by typing the .help command. A user 

profile could be used to provide the default value for this mode. 

Most languages will have unparsing schemes that specify that nodes be anparsed In the 

same order as they appear in the abstract syntax specification. However, there are some 

languages for which the user would like to build programs from left to right (e.g. functional 

programming languages such as ALFA [Habermann 80]). To achieve this the unparsing 

schemes specify a different order of unparsing than the abstract syntax tree, and the ALOE 

would follow the order of the tree while moving the cursor from one node to the next, thus 

achieving the desired effect. Figure 2-9 shows the effect of bui'-lmy a function composition in 

ALOEALFV The components of the operator COMP are unparsed in reverse order, and appear 

then to be constructed from left to right. 

In the case of searches however, one user might want ALOE to follow the internal tree order 

while another user might want it to follow the textual order which is the one that the unparsing 

schemes define. To provide the needed flexibility to achieve the desired behavior every time, 

ALOE defines a mode that affects the tree traversal order. On the normal setting the program 

cursor follows the internal tree structure.   It can be changed so that the program cursor 
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Display 

func : (Int.lnt) -> Int :• <expr> 

Syntax Tree 

FUNDECL 

fnew <oxpr> 

Commands: COMP f 

func ; (in.lnt) -> Int : 

FUMDECL 

Commands: COMP g 

func : (int,int) -> Int :! <expr> 9 • * 

COMP    |/ 

COMP 

<txpp> 

Commands: h 

func : (1nt.1nt) -> Int ;» h • g • f 

COMP 

COMP 

Figure 2-9:  Building a Function Composition in Alfa 
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follows the concrete textual order, in either setting the program cursor will not be moved into 

a node that is not currently unparsed, i.e. if it is not referenced in the current unparsing 

scheme. 

The need for this mode was not anticipated because it was thought that all languages 

would unparse their internal structure into text in the same order. It was learned that this was 

not the case when ALOE^^ was generated. For other languages that do not have this kinds of 

constructs, the mode setting is not important. 

As part of the constructive approach to program building in an ALOE, the program cursor io 

moved to the next meta node after every constructive command. The space in which the 

search for the meta node is performed varies according to the setting of the editmode. When 

in constructing mode, ALOE searches the visible context, when in editing mode the search is 

restricted to the particular subtree where the previous operation took place. This avoids the 

undesirable effect of having the cursor moved to an unrelated section of the program that 

happens to have a meta node left. The .find command can be used to search for any meta 

nodes left. 

For ALOE environments that use the facilities provided by the stack of context windows the 

setting of the show-windows mode causes the context stack window to be displayed. This 

mode is only meaningful for ALOES that will have different contexts defined. 

The window layout on the screen can also be defined through a user profile. ALOE reads a 

file that contains the definition of the window layout and every user can then define it to his 

convenience. This profiling mechanism could be extended to provide users with the ability to 

choose between different formatting styles and other such features that could be 

customizable in an ALOE. 
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Chapter3 

The ALOE Generator 

3.1. Introduction 

In this chapter we will discuss the issues involved iri th3 generation of syntax-directed 

editors, as well as the structure and properties of the ALOE generator. The ALOE generator 

produces an editing environment based on a grammatical description of a language. A wide 

variety of editing environments can be generated: from simple stand-alone editors with only 

syntactic knowledge to very complex software development environments such as GANDALF 

[Habermann 82], discussed in chapter 5. In section 6.6 we will discuss how the design 

decisions are influenced by the differences of generating syntax-directed editors as opposed 

to building a hand-crafted editor for a particular language. 

Every generic system like the ALOE generator will have a kernel, common to all the 

generated systems. It also needs to have some form of input that specifies the language or 

structure for which an editor is going to be generated. If the resulting product is to have some 

language specific behavior, some extensions should be provided. Consequently, every ALOE 

generated has three major components: 

• The ALOE kernel, common to all ALOES. It understands and manipulates the 
internal representation of trees (e.g. programs) and is language independent. It 
provides an extensive set of editing commands for tree manipulation, cursor 
movement, input/output, display manipulation, ere. (see chapter 2). It-also 
provides the default implementation of the set of environment specific functions 
such as the symbol table manipulation (see chapter 5 for a detailed discussion of 
these functions). 

• The syntactic tables produced from the grammatical description of the language. 
They provide ALOE'S syntactic knowledge of the language, as well as the 
unparsing knowledge through the unparsing schemes. 

Bwmim KotBum-winum 
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• 

• Implementation of action routines, extended commands and environment specific 
routines. These provide the language specific behavior of an ALOE that is beyond 
its syntactic capabilities. Action routines are discussed in detail in chapter 4. The 
use ofKextended commands in a large integrated environment is discussed in 5. 

3 2. The Grammatical Description 

The most important contributions of the design of the grammatical description are: 

Clear separation of'abstract syntax and concrete representation of the operators 
of the language (discussed previously in chapter 2). The ALOES directly 
manipulate the abstract syntax; all interactions are in terms of this syntax. The 
concrete representation specification is only used for display purposes. This 
allows the implementor of an ALOE to define multiple concrete repreeentations for 
a single abstract syntax. 

• The grammatical description defines an important part of the user interface. The 
names of the language operators are the names of the constructive or language 
commands of the ALOE (see chapter 2). 

The grammatical description follows certain syntactic jles and its syntax can be expressed in 

terms of itself. This means that an ALOE can be generated to create and manipulate 

grammars. This ALOE will be referred to as aloegen. The concrete representation of 

grammars is no longer important just as concrete representations of other languages are no 

longer important in the ALOE context 

The following sections discuss in detail each one of the conceptual pieces that form the 

grammatical description. These pieces are interleaved in the actual description. To facilitate 

the discussion, this is a list of the conceptual pieces: 

• The name of the language. 

• The abstract syntax description of the language. 

• The root operator. 

• The precedence of non-terminal operators. 

• The unparsing schemes that describe how the (internal) tree form is displayed on 
the screen. They describe (potentially many) mappings from the abstract syntax 
to the concrete representation. 

• The action routines associated with each operator of the language, needed to 
expand on the syntactic capabilities of the basic ALOE. 

■   :^^  I ,    _ 
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• The synonyms available for each operator. 

• Whether or not the corresponding node of a non-terminal operator should be a 
root of a separately stored tree. 

Figure 3-1 shows the grammatical description of a very simple language that implements a 

small interpreter. Throughout this chapter, this example will be used to illustrate the different 

parts of ihe grammatical description. The grammatical description used in MENTOR 

[Donzeau-Gouge 80] is similar to the one described here, in section 3.2.9 we will discuss their 

differences. 

3.2.1. The Name of the Language 

The name of the language is specified as part of the grammatical description of that 

language. It is really a name of the ALOE version for a language. This name is encoded in 

every tree that an ALOE writes and is used to prevent an ALOE for one language from editing a 

tree of a different language or a tree of a different version of the same language. In the 

example of figure 3-1, the name of the language is INTERP. 

During development of a grammar for a new language, changes are made to the grammar 

that make the trees created by an earlier ALOE version no longer manipulable by the new 

version. The ALOE implementor does not always change the name of the version whenever 

there is a change in the grammar, and inconsistencies may develop when the ALOE tries to 

manipulate a tree that is really of a different version. 

This situation can be dealt with through action routines of aloegen (the ALOE for 

grammars), that could change the name of the version whenever a structural change is made 

to the grammar. Since only the abstrac* syntax structure is stored in the files and changes to 

the unparsing schemes do not affect this structure, it is consequently not necessary to 

change the version name after making modifications to the unparsing schemes. 

There are certain changes that should not cause incompatibilities in the files. For instance, 

adding new operators should not make previously stored trees that do not use these 

operators, incompatible. The problem is that the format of the tree files includes references to 

the table of operators that defines the language. These references change when new 

operators are added unless the operators are added at the end of the list of operators. They 

also change when operators are deleted. 
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Language 
Root Oper 
{ 
LOOPVAR 

INT 

EMPTYSTEP 

PROGRAM • 

PRINT 

FOR 

PLUS 

TIMES 

STMTS 

Nam«: INTERP 
ator: PROGRAM 
• terminal operators •/ 

(0) "9s" 
action: <nona> 
synonym: "'" ; 
{=} 
(0) "90" 
action: aINT 
synonym: "§'   ; 
{«} 
(0) "1" 
action: <none> 
synonym: <none> ; 

non-terminal operators •/ 
stmts 
(0) "91" 
action: <none> 
synonym: <none> 
precedence: <none> 
Fllenode; 
<exp> 
(0) "print 90," 
action: <none> 
synonym: <none> 
precedence: <none> 
Non-fllenode; 
loopvar exp exp stepexp stmts 
(0) "for 91 - 92 to 93 step 949+9n959-" 
(1) "for (91 • 92; «1 <■ 93; SI -+ 94)9+9n969- 
action: <none> 
synonym: <none> 
precedence: <none> 
Non-fllenoda; 
exp exp 
(0) "91 + 92" 
action: <none> 
synonym: "+" 
precedence: 1 
Non-f Henode; 
exp exp 
(0) "91 • 92" 
action: <nona> 
synonym: "•" 
precedence: 2 
Non-filenode: 
<stmt> 
(0) n909n" 
action: <none> 
synonym: <none> 
precedence: <nona> 
Non-fllenoda; 

} 
{       /• classes •/ 
stmts STMTS ; 
exp INT LOOPVAR PLUS TIMES ; 
loopvar LOOPVAR ; 
stepexp INT PLUS TIMES EMPTYSTEP 
stmt PRINT FOR ; 
} 

Figu re 3-1: Grammatical Description of a Simple Language 
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This problem could be avoided through action routines of aloegen which could generate a 

new reference every time a new operator is added, and not reuse the reference for a deleted 

operator, although this could ultimately result in a very large table with many empty entries. 

This does not solve the problem of modifying the abstract syntax description of a particular 

operator: adding a new offspring, deleting one or changing the order of them. 

What is needed here is a general mechanism to map one tree into another given the 

changes to the grammar. This is not necessarily an easy task and is probably not worth 

providing it, if one considers that during development of a new grammar all programs are 

illegal until the final form of the grammar is developed. There may be some exceptions to this 

situation. The grammatical description itself is one: sometimes it is desired to change it to add 

a new piece of information (for example, when synonyms were added). These changes could 

cause previous tree grammar files to be incompatible. Other possible exceptions are 

grammars for complex language systems, such as GANDALF [Habermann 82], in which new 

features may be added through modifications to the language. 

Other systems that deal with structured internal representations must deal with this 

problem too. In the IDL Translator [Lamb 82] an attempt is made to provide the mechanisms 

to perform the transformations on the structures when changes are made. 

This problem does not arise in parser generators because the programs are kept in textual 

form and are always reparsed into the internal representation. Changing the grammar for the 

parser generator does not make the old program incompatible. It may cause it to have 

syntactic errors according to the new grammar but it still can be processed. The important 

difference here is that no implicit language information is encoded in the toxt file. 

3.2.2. Abstract Syntax Description 

The description of the syntactically correct sentences in the language is done in a two level 

structure. One level provides the description of each language construct (called operators of 

the language). There is one production in the grammatical description for every operator. 

Operators correspond directly to nodes in the internal tree. There are two possible 

descriptions of this type: terminal operators, whose corresponding nodes represent the 

leaves of the tree (e.g. an integer constant or an identifier) and non-terminal operators, whose 

corresponding nodes represent either an ordered set of offspring or a list of offspring (e.g. an 



44 THE ALOE GENERATOR 

IF statement or a list of variables). The second level of the description lists the classes of the 

language. Classes represent the set of legal operators that can be created in a place of an 

unexpended offspring (referred to as a me/a node). In the example of figure 3-1, the class exp 

includes the operators INT.  LOOPVAR,   PLUS and TIMES. 

A good way to look at the grammatical description is that the sentences form AND/OR 

structures [Tichy 82] where the operators provide the AND functions (the structure of the 

offspring is uniquely determined) and the- classes provide the OR functions (a choice from a 

set of operators is specified). 

3.2.2.1. Terminal Operators 

There are several types of terminal operators. They differ from each other and from non- 

terminal operators with respect to user input interface (some constant types have embedded 

blanks, others do not), and with respect to their internal node representation. The internal 

representation is not important to an ALOE user but it is important to an ALOE impiementor 

who must write action routines. For a detailed description of the internal representation see 

[Medina-Mora 81a]. 

The production for a terminal operator in the grammar specifies its type, the set of 

unparsing schemes, the action routine name and the synonym for the operator. In the 

example of figure 3-1 the terminal operator INT is specified to be of type constant, with one 

unparsing scheme, an action routine called aINT and '#' as its synonym. 

The original design included the following set of terminal operator types: 

• Static operators are used for some concrete pieces of the language like the name 
of a type (e.g. float, integer, boolean, etc.). The corresponding nodes contain no 
other information. 

• Constant operators are used for integer or character constants. Their 
corresponding ncdes contain ASCII values other than blanks. 

• Variable operators are used for the variables of the language. Names of variables 
are entered into a symbol table. The ALOE kernel provides an interface to a very 
simple name table structure which can be replaced by a more complicated 
symbol table mechanism (see sections 3.3 and 5.2,4). 

As more grammars that included string constants and comments were developed, it 

became apparent that constants with embedded blanks should be treated differently. 
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Experience with long comments and the creation of the GANDALF grammatical description 

[Notkin 82b] (see chapter 5), which included documentation and log messages, underlined 

the need for an underlying text editor to deal with long pieces of text. Two new terminal 

operator types were then introduced: 

• Long Constant operators are constants whose corresponding nodes contain 
ASCII values including blanks. These operators are used for language constructs 
such as comments and string constants. Their internal representation is identical 
to constant operators. They differ with respect to user input interface: the input Is 
different because of embedded blanks. 

* Text Constant operators are used for long pieces of text that require text editing 
capabilities for their creation and modification. Again, they differ from the other 
constant operator types with respect to user input interface: an external text 
editor (UNIX EM ACS [Gosling 81a]) is used for creation and modification of text 
constants. 

The additions of long constants and text constants were motivated more by issues of user 

interface than by issues of lexical analysis. But one might conceive of a larger set of constant 

operator types to deal with lexical differences. For example, we could have integer, real, 

character constants. ALOE could perform automatic lexical analysis to validate such 

constants as they are entered. However, the lexical rules can change from language to 

language. What is needed is a specification of the lexical rules as part of the grammatical 

description. 

In the currerit ALOES, lexical analysis (if desired) is performed by the action routines 

associated with the constant and variable operators. Lexical analysis is only needed for 

constants and variables and it differs from the lexical analysis needed in a compiler where 

keywords, brackets, punctuation marks, efc, must be identified. 

Text editing capabilities should be incorporated into ALOES to be able to edit the textual 

pieces in the context where they appear, rather than editing them in a separate environment. 

It is desirable to be able to implement this via an interface to an existing text editor rather than 

having to write a new one. 

Unfortunately most of the good existing display editors have their own idea of the screen 

and window manipulation so that they can take reasonable advantage of it. In the ALOE 

context the text editor would have to interact with ALOE'S handling of the display and its 

windowing capabilities as well as with the unparsing process.  To edit textual pieces in the 

LL 
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context where they appear means to have the surrounding pieces of program displayed at the 

same time, which is what the Synthesizer [Teitelbaum 81a] does. The difficulties in this case 

are with respect to the growing or shrinking of the size of the textual piece being educü. 

Another source of difficulty is the operating system interface. Different editors require 

different "settings" of the terminal I/O handler. A new implementation based on ALOE'S 

display and unparsing mechanisms may be easier to do. This pay be definitely worth doing in 

the context of generating an ALOE for a document production system like SCRIBE [Reid 80] 

whose terminal operators.would be paragraphs of text. 

3.2.2.2. Non-Terminal Operators 

There are two types of non-terminal operators: fixed arity operators and variable arity (i.e. 

list) operators. Fixed arity operators are described by listirj the (ordered) set of offspring. 

Ecch offspring is represented by a class that specifies the set of legal operators for it. In the 

example of figure 3-1 trie FOR operator has five o'fspring of different classes. 

Variable arity operators are described by specifying the name of the class from which 

ejements of the list must be selected. In the example of figure 3-1 the STMTS operator has a 

variable number of offspring of class stmt. Lists in an ALOE can be empty, th~. is, they are 

defined to be lists of zero or more elements. 

The production for a non-terminal operator in the grammatical description specifies its 

abstract syntax structure [i.e. if the operator is of fixed or variable arity and the classes of the 

offspring); the set of unparsing schemes that specify the different mappings from the abstract 

syntax into the concrete representations; the name of the action routine associated with the 

operator; the precedence value of the operator; a synonym for the operator; and whether or 

not the corresponding node should be a root of a separately stored subtree file. All the 

information after the unparsing schemes is optional. In the example of Figure 3-1 the FOR 

operator has five offspring of different classes, two unparsing schemes and no action routine, 

precedence or synonym specified. 

3.2.2.3. Classes 

Classes provide the OR functions of the AND/OR structure that defines the abstract syntax 

of the language in the (jrammatical description. The class represents the set of legal 

operators that can be created to replace a meta node of a particular offspring of a non- 
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ierminal node. Meta nodes are automatically given the name of the corresponding class. It is 

then clear in the display the kind of operator that is expected. 

There are some cases in which a class will have only a single non-terminal operator. For 

example, if an implementor wants to have the effect of a list of pairs, in the grammatical 

description he would have to specify an extra level for the pair. This extra level is a fixed arity 

node with two offspring. The class of elements of the list then contains this non-terminal 

operator as its only member. Another case arises when the desired effect is to have one of 

the offspring of a fixed arity node be a list: an extra variable arity operator must be introduced 

as the offspring. 

3.2.3. The Root Operator 

This is simply the start or distinguished symbol of the grammar. The root operator is 

invoked as a constructive command on startup of an ALOE. The resulting node is referred to 

as the system root, in the example of figure 3-1, the operator PROGRAM is the root operator. 

3.2.4. Precedence 

Non-terminal fixed arity operators may have a precedence value associated with them. 

These values are used to provide automatic parenthesization while unparsing into infix 

notation. They are mostly used for expressions which are the constructs of the language 

traditionally shown in infix notation. In the example of figure 3-1 the operator TIMES has a 

precedence value of 2 and the operator PLUS has a precedence value of 1. 

For the correct parenthesization of expressions it is also necessary to know if the operator 

is associative in addition to its precedence. For example'a - b - c'is not equivalent to 

'a - (b - c)'because the operator"-" is not associative. If associativity is not handled, 

expressions like this must be broken into separate expressions, if the textual, form of a 

program is to be used. 

It should be clear, however, that precedence and associativity values are only needed for 

the concrete representation mapping if expressions are going to be unparsed in infix notation. 

They are not necessary for the correctness of the internal representaiion: the abstract syntax 

description is unambiguous.   In fully developed programming environments, such as LOIPE 



48 THE ALOE GENERATOR 

[Feiler 82a] and GANDALF [Habermann 82], code is generated from the internal tree and thus 

the correct code is always generated regardless of possible ambiguities in the concrete 

representation. 

ALOES are designed so that the valid version of the structures or programs created is the 

internal tree representation. The different concrete mappings should be only for display and 

readability purposes. Nevertheless we have tried to include all the necessary mechanisms so 

that every ALOE generated can produce a correct and unambiguous textual representation of 

its structures or programs (at least for the main unparsing scheme). After all, the concrete 

representation is the only feedback the user has about his structure. Precedence and 

Essociativity values are one such mechanism. Section 6.4 discusses more issues about 

ambiguity of language constructs. Section 6.2.2 discusses more issues about unparsing 

expressions. 

3.2.5. Unparsing Schemes 

The clear separation of the abstract syntax from the concrete representations of structures 

or programs allows the ALOE impiementor to define multiple concrete representation 

mappings for a single abstract syntax. This is one of the major advantages of the design of 

the grammatical description. Sections 2.5 and 5.2.8 contain a collection of examples and 

applications of multiple unparsing schemes. Using the windowing capabilities and the action 

routine interface the language developer can define many different views of the system by 

having new windows defined at different levels of the grammar and using multiple unparsing 

schemes. 

Unparsing schemes are used only as a means to generate a textual representation from the 

valid internal tree representation for display and readability purposes. Unparsing schemes 

consist of running text mixed with formatting commands. Some of the available unparsing 

co Tunands include: 

• Commands to identify the type of node (like constant vs variable), so that its 
representation can be correctly retrieved 

• Commands to deal with indentation, spacing and line breaks. 

• For non-terminals the commands define recursive invocations of the unparser to 
process the offspring. For fixed arity operators the order of unparsing can be 
different than the internal order. 
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• For lists the scheme specifies the separator between elements of the list and a 
special unparsing to be used when a list is empty, can be specified. 

• Commands to dynamically change the unparsing scheme used. 

For a complete set of the unparsing commands see appendix B In the example of figure 3-1, 

the operator FOR has two unparsing schemes which would produce the following two 

different representations: 

for 1 ■ *  '.o  8 step 2 
prin. v1 »• 3) • 1, 1 

for (1 -4; 1 <• 8; 1 ■♦ 2) 
print (1 + 3) • 1, 1 

Unparsing schemes are also used to specify curs movement (see section 2.4.2.1) 

depending on the value of a mode. The mode specifies whether the Internal representation 

ordering of the nodes (the one defined by the abstract syntax structure) or the unparsing 

order determines the order of cursor motion. This can be used to specify right to left 

movement in some structures instead of left to right by unparsing its offspring in inverse 

order. 

Unparsing schemes also define the visibility of nodes in the tree. There are three different 

possibilities: either the node is not visible at all (it is not referenced in the unparsing scheme), 

or it is visible but not a legal cursor position (it will be unparsed but the cursor will skip it), or 

the node is both displayed and a legal cursor position. The second possibility can be used 

when structures have a name that ic repeated in several places but it is desired that the user 

only edits it in one place with the ot'.ur places reflecting the changes immediately, or to 

disable the modification of a particular node, by not letting the cursor stop there, while still 

showing it on the display. Section 6.5.3 contains an evaluation of the use and limitations of 

multiple unparsing schemes. 

t 

3.2.6. Action Routines 

One action routine may be associated with every language operator. These action routines 

will be called by ALOE in a variety of situations, such as the creation of a node, deleiion, cursor 

movement, efc. Instead of one routine per operator, an ilternate üesign could nave a set of 

action routines specified in the grammar for p'ch operator: one for each kind of action call. 
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The former was chosen because it keeps the grammar much simpler and because the action 

routine implementor can then decide if he wants to have a separate routine for each action or 

if he wants to share some code for several of the calls. In some cases it is desirable that 

several calls have similar behaviors. 

These action routines add language specific functionality to an ALOE that is usually non- 

syntactic. They can be used for a wide variety of tasks from semantic checking to 

manipulation of the display. Chapter 4 discusses in detail the action routines interface and 

their applications. In the example of figure 3-1 the INT operator has aINT as its action 

routine. 

3.2.7. Synonyms 

As described above, the grammar defines part of the user interface when it defines the 

names of language operators. This is fine for high level structures especially because the 

editor needs only as many characters as needed to specify a name unambiguously. However, 

at the expression level it would be a bad user interface if the user had to specify PLUS or even 

P for an addition operator. To solve this problem synonyms for operator names were 

introduced and are specified (optionally) in the grammar. In the example of figure 3-1, a'+' is 

defined as the synonym of the PLUS operator, and '*' is defined as the synonym of TIMES. 

The user can invoke the constructive command using the operator name or its synonym. 

It is also the case that the operator could have been called '+' instead of PLUS avoiding the 

need for a synonym in this case. There are other cases like the assignment operator in C 

[Kernighan 78], in which if the implementor were to use '■' as the name of the operator 

instead of ASSIGNMENT, with '■' as the synonym, a user not familiar with the language would 

have no way of knowing that this was an assignment operator instead of an equality operator. 

In other situations there can be different types of similar operators that could have the same 

synonym. For example, different types of identifiers could have different operator names 

{MIDENT for modu'e identifier, FIDENT for function identifier, etc.), with the same synonym as 

long as they do not appear in the same class. This way the user can uniformly use the 

synonym for all the identifiers, while the ALOE implementor can still be able to differentiate 

between these operators for unparsing purposes or for differences in the action routine 

implementations. 

■■-■■, ■ 
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3.2.8. File Nodes 

The final part of the description indicates whether or not a non-terminal operator has 

associated with it a file node. This indicates that the non-terminal is the root of a subtree that 

is stored in a separate file (for storage and checkpointing purposes). The root operator (see 

section 3.2.3), the operator PROGRAM in the example of figure 3-1, is automatically set by 

aloegen to have a file node associated with it. 

File nodes are used to achieve the separation oi programs and data bases into smaller 

pieces. They have information about the file that contains the subtree. File nodes can also 

have a symbol table associated with them, in which case the name of the file where the 

symbol table is stored is kept in the file node. Unparsing schemes can be used to hide the 

subtrees that are pointed to by the file node: a special unparsing command in the unparsing 

scheme of the non-terminal indicates whether or not the subtree is visible and should be 

unparsed. Checkpointing and visibility rules can be coupled, but they are two different 

mechanisms that can be used separately. 

3.2.9. Comparison with Other Grammatical Descriptions 

Other grammatical descriptions and formalisms, such as BNF [Backus 59] and the MENTOR 

grammar [Donzeau-Gouge 80], have been used for syntax-directed editors. One of the early 

efforts in building an editor generator using a grammatical formalism was the Emily System 

[Hansen 71]. It used a modified BNF as its formalism. In automatically generated syntax- 

directed editors the grammatical formalism defines part of the user interface and thus the 

formalism should be designed taking this into account. In BNF and other formalisms, 

productions are grouped together forming hierarchies of productions. For any particular 

construct of the language there is a hierarchy of productions leading into it. Example 

3-2 shows a typical BNF description for expressions. 

Precedence of operators is handled through this hierarchy concept. As we can see, 

arithmetic expressions have simple arithmetic expressions, which have 

terms, which have factors, which have primaries as offspring. 

The Emily system [Hansen 71] takes the first step towards solving this hierarchical problem 

a' the expression level by having all non-terminal operators at the same level.   Terminal 
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<ar1th-9xpp>  :■ 
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Figu re 3-2: A typical BNF description for expressions 

operators are still at a different level in the hierarchy. It is necessary to go through an extra 

level for identifiers when constructing simple expressions such as 'a + b'. BNF is a very 

good formalism to be used for parser generators and other such systems but does not provide 

a good user interface. Aside from the problem with hierarchies, the concrete representation 

of the constructs is mixed with the abstract syntax, as we can see in the example 3-2. In Emily, 

the productions that could be applied at any particular point were displayed in a menu. By 

mixing the concrete representation in the production, the space available for the menu is filled 

up very quickly, and in this case, the user has to request to see more of the menu. This just 

makes it confusing for a user when he tries to choose which production to apply. 

The ALOE generator grammatical description solves the problem by providing a flat 

structure instead of a hierarchical one, and by separating the abstract syntax specification 

from the concrete representation. All expression operators are at the same level (they are 

members of the same class). Precedence and associativity values are used to provide the 

correct parenthesization of expressions. Parser generators, such as YACC [Johnson 75] also 

use precedence and associativity values 

MENTOR [Donzeau-Gouge 80] uses a similar grammatical description as that of ALOE. It 

distinguishes between operators of the language with abstract syntax specifications, and 

classes to group them. It does not have multiple unparsing schemes, specification of action 

routines, precedence values, synonyms or file nodes. 

—i 
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3.3. The ALOE Kernel 

As described above, the kernel is common to all ALOES. It provides an extensive set of 

editing commands that include, among others, commands for insertion, deletion, clipping, 

cursor movement, searching, scrolling, reading and writing from files as well as more 

complicated tree manipulations such as nest and transform (see section 2.4.2). It also 

provides the language independent command interpreter that distinguishes between editing 

and constructive commands, as well as the table driven constructor that lets the user replace 

meta nodes with legal operators only (the tables are generated by aloegen as an alternate 

unparsing of the grammatical description). Finally, the kernel provides default 

implementations of the environment specific routines described in the next section. 

3.4. Extensibility 

ALOES can be extended to have language or environment specific bihavior. There are 

three different kinds of mechanisms to provide these extensions: implementation of action 

routines, extended commands and environment specific routines. 

Action routines are used to implement language specific functionality such as 

programming language semantic checking, access control, automatic generation of program 

pieces, interface to other parts of the environment such as code generation and debugging, 

etc. Chapter 4 discusses these applications in detail. 

Extended commands are add« t .o the basic set of editing commands to expand on the 

capabilities of an ALOE. Some examples of possible extended commands include commands 

for running programs, continue execution after interruption, envit „ nment specific searches, 

ere. Chapter 5 discusses some of the applications of extended commands for a large 

integrateo ^ftware development environment. 

» 
Experience has shown that some ALOES desire certain functionality that can not be 

produced simply through action routines or extended commands. A clear example of this is 

the symbol table manipulation. Different environments may want to implement different 

symbol table mechanisms. The kernel provides a uniform interface to the symbol table 

mechanism through a set of routines. A default implementation of these routines is provided 

for ALOES in which a simple name table mechanism is sufficient. For others, some or all these 
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routines can be replaced (sometimes only a couple of them need to be replaced) by the 

routines that implement more complex symbol table schemes. A full description and 

specification of these routines is given in the ALOE Users' and Implementors' Guide 

[Medina-Mora 81 a]. 

S 
Environment 
Specific 
Routines 

Extended 

Commands 

Figure 3-3: The ALOE Generation Process 

3.5. The Generation Process 

The ALOE implementor goes through a set of simple steps in order to generate an ALOE. 

First, the grammar is created or modified with aloegen, the ALOE for grammars, which 

produces the language tables and compiles them [Notkin 82c]. Then, the implementations of 

action routines, extended commands and environment specific routines are written and 

compiled.   Finally, Idaloe is invoked which will load the language tables together with the 
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language specific impiementations to produce an ALOE.   Figure 3-3 illustrates the ALOE 

generation process. 

This process has been successfully applied on a wide variety of languages: 

• A set of algol-like languages such as GC (GANDALF-C [Feiler 79], a slight variant 
of C) which includes a parser for programs constructed outside of ALOE, C 
[Kemighan 78], PASCAL [Jensen 74], ADA [DoD 80], different subsets of C and 
Ada, efc. 

• GANDALF, a large integrated software development environment whose language 
is a combination of a language for system version control [Kaiser 82], project 
management [Habermann 79a], and the programming language (in this case GC). 
Chapter 5 elaborates on the issues that arise in the implementation of such a 
large environment. 

• A functional programming language, Alfa [Habermann 80] through which we 
have gained experience with ALOES for non algol-like languages. 

• Aloegen, an ALOE for the grammatical description. One unparsing scheme shows 
the grammar syntax, the others generate the language tables in C. 

• A large collection of small languages that helped us investigate different aspects 
of ALOES within simple environments. 
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Chapter 4 

Action Routines 

4.1. Introduction 

Action routines are specified as part of the grammatical description of the language. One 

routine can be associated with each operator of the language. Action routines are used to 

perform context sensitive processing and to add language specific behavior to an ALOE. 

Action routines are called by ALOE in a variety of situations as described below. In this 

chapter, the application of action routines and their communication interface with the ALOE 

kernel will be discussed. The ALOE implementation environment, that provides the facilities 

and mechanisms for the implementation of action routines, will also be discussed. Action 

routines are optional, they need not be specified for all the operators of the language. A 

purely syntactic ALOE without action routines can also be generated. 

The ALOE kernel communicates with the action routines by invoking them at the appropriate 

times. Action routines communicate with the ALOE kernel through their return values and 

through the invocation of functions from the ALOE implementation environment. Action 

routines communicate with other parts of the environment through explicit invocation of their 

functions and through modifications made to the common internal representation. The writer 

of action routines will be referred to as the ALOE implementor. 

4.2. Uses of Action Routines 

Action routines are used for many purposes. The original design was intended to provide a 

mechanism for.checking programming language semantics. However, in highly interactive 

environments such as the ones provided by ALOES, action routines can be used to implement 

a large number of functions that some times have very little to do with programming language 

PACK BUtK-Jief FILMED 
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semantics. Although the limits of their application have not been explored completely, they 

certainly promise a wide variety of possibilities, including: 

• Programming language semantics checking. As said above, this was the first 
motivation for action routines, and is a very important application. ALOE can give 
the user immediate feedback on semantic errors as soon as they are made, giving 
him the opportunity to correct them immediately. The action routines can also 
provide some aotomatic correction themselves (e.g. automatic declaration of 
variables, spelling correction, etc.). 

Some semantic errors can be precluded by modifying the syntax of the language. 
In an ALOE environment, the user is explicitly specifying the language constructs 
that he wants to create, instead of having a parser infer them from examination of 
some text. So, the syntax can have richer constructs that would be difficult to 
disambiguate with a parser. For example, the use of"+" as a function name. 

In some languages, the syntax is disambiguated through semantics as is the case 
of the expression "f (n)" in ADA [DOD 80], which could be a function call or an 
array reference. In an ALOEAOA this is not an issue because the user will specify 
which type of construct he is building. The fact that the concrete representation 
is the same does not matter at all. 

• Record state. Again, a lot of information is available because the environment is 
actively participating in the construction and modification of the programs. As 
the interaction with the ALOE takes place, status information can be recorded, 
updated, used, checked, efc. The ALOE implementation environment (see section 
4.6) provides the ALOE implementor with a set of routines and data structures to 
help manipulate this state information. 

An important example of the use of state information is the implementation of 
some of the project management functions of GANDALF [Habermann 82], that 
synchronize the access of multiple users to the environment (see section 5.2.2). 

• Interface to other parts of the environment. Every generated ALOE is an 
environment for a particular language. Action routines can be used to interface 
to the available tools of the environment. Some of these interfaces can be made 
transparent to the user and applied at the appropriate times. For example, a code 
generator can be invoked from the action routine associated with a particular 
operator (e.g. a procedure) when the user finishes entering the associated 
subtree. From the user point of view, compilation happens automatically. This is 
yet another example of the active participation of the environment in the 
programming process, and is not limited to construction and modification of 
programs. 

Another example is the interface with the display mechanisms, allowing the action 
routines to update the window allocation under certain circumstances (see 
section 4.3.3). 

• Automatic generation of program pieces. There are a large number of cases in 
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which information already entered in the program can he taken advantage of an j 
used to generate some pieces of program elsewhere. Some examples include 
automatic declaration of variables, derivation of specifications, initialization of 
default values, etc. In aloegen, the ALOE for creating grammatical descriptions 
(see section 3.2), entries for classes and operators can be made as soon as they 
are referenced. 

This is one clear advantage of the interactive nature of ALOES: the ALOE can 
anticipate what users may want to do and thus save time and effort. It is also a 
clear indication of the possibilities of exploitation of its language knowledge. 
However, every ALOE implementor may desire certain behavior for any particular 
language. For this reason, action routines are the proper mechanism to 
implement this functionality by giving the implementor the control over this 
behavior. 

• Lexical analysis. ALOES do a very limited form of automatic lexical analysis (see 
sections 2.4.1.2 and 3.2.2.1). As discussed in those sections, the automatic 
lexical analysis capabilities could be expanded. But action routines can also 
perform the lexical analysis when a terminal node is created and they can abort 
the creation if the token is illegal (see section 4.4). The lexical analysis performed 
by action routines need not be restricted to checking for the legality of tokens, but 
as semantic checking is coupled, the action routines can also check for 
duplicated names and other such kinds of name checking. 

• General communication mechanism between different parts of the environment. 
In an integrated environment as the one an ALOE provides, the tools of the 
environment know about each other and can then cooperate towards a common 
goal. They can communicate with each other and transfer the necessary 
information through calls made, and data structures maintained, by action 
routines. 

One example of this communication is the one made between the code 
generator, the loader and the debugger in GANDALF [Habermann 79b, Feiler 82a]. 

If several of these applications will be handled in a single action routine, the separation and 

interaction among them must be handled explicitly in the action routine itself. 

In an ALOE environment, action routines must deal with dynamic programs [i.e. programs 

that are constantly changing), as well as with incomplete ones {i.e. not yet fully specified). 

This contrasts with semantic checkers of compilers which deal with static programs; once the 

program is handed to them, it is complete and will not change. Action routines must then 

address and understand the impact on the semantics of a program when it is being constantly 

modified, action routines should also recognize when programs are incomplete and they 

should act accordingly. 
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Another importatu difference with semantic analyzers in compilers is the fact that programs 

may be semantically incorrect after an error is made and detected, and will not be necessarily 

corrected immediately. Deletion and modification of program pieces imply undoing of 

semantics (as well as other side effects, like the setting of defaults, etc.). It is then necessary 

to broadcast the effects of a modification. For a detailed discussion of how this is done in a 

particular programming environment see [Feller 82a]. 

In MENTOR [Donzeau-Gouge 80] semantic checking routines can be written in MENTOL and 

can be invoked by the user. This invocation must be made explicitly by the user instead of 

being done implicitly by the system as is the case in ALOE. The semantic checking that 

MENTOR provides is not automatic nor does it provide some of the other automatic processing 

that ALOE provides through its action routine interface (for example, the automatic generation 

of program pieces or the automatic invocation of other tools of the environment). 

4.3. Calling Instances 

ALOE activities are classified into different kinds of actions. There is a set of basic actions 

that include: CREATE for creation of nodes, INSERT and DELETE for insertion and deletion 

of subtrees and ENTRY and EXIT for moving in and out of nodes through cursor movement. 

When the .nest and the .transform editing commands were added as editing commands, 

the need for special actions was discovered and the NEST and TRANSFORM actions were 

introduced. When the windowing and context switching capabilities were implemented, the 

need for calls to deal with changing the contexts was discovered and the FAILUP and 

FAILDOWN actions were added. The calls on FAILUP and FAILDOWN are made when an 

unsuccessful attempt is made to move the cursor out of a node and into a node respectively. 

For every one of these actions there is a call on an action routine. Two parameters are 

explicitly passed on the call: the node where the action takes place and the kind of action. In 

this section each kind of action will be discussed. 

The action routines are organized around these actions with the purpose &« providing a 

genera! and flexible mechanism for the implementation of a variety of different environments. 

They could have been structured around the applications mentioned in the previous section 

but that would take away some of their flexibility by imposing a predetermined structure. It 

could also have an impact on their efficiency: lexical analysis or automatic generation of 

program pieces is not done everywhere. Finally, some of these applications were discovered 
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through the experience of using action routines and more applications will be found as more 

experience is gained. 

No action calls are made in the clipped areas (see section 2.4.2.2). The clipped areas 

contain subtrees (pieces of programs) that are out of context and whose semantics could not 

be checked at that point. The semantics are checked, through an action call on INSERT, 

when a clipped tree is inserted. 

4.3.1. Creation of Nodes 

An action call on CREATE is made when a node is created as a result of a constructive 

command. A CREATE call on a non-terminal node can be used to automatically generate 

some fields (e.g. defaults), on a terminal node, it can be used to validate the value of the 

terminal node given by the user. When a non-terminal has just been constructed, its offspring 

are meta nodes. The CREATE action can be aborted by the action routine and ALOE will then 

undo the operator application and put the meta node back in its place. This is very useful 

particularly when the action routine is performing lexical analysis and determines that the 

token is illegal. 

If the construction | .-ocess of the tree would be static (i.e. once the tree is created, It is 

never modified), then the only action call needed is the one on CREATE. Indeed, this is the 

type of interface found in parser generators that include semantic routines [Johnson 75]. 

4.3.2. Visiting Nodes 

An action call on EXIT is made when a node is left, going up towards its parent node in the 

tree, as a result of the cursor moving our of the node (see section 2.4.2.1). An action call on 

ENTRY is made when a node is entered from above, as a result of the cursor moving in to the 

node. Figure 4-1 shows a portion of a syntax tree indicating the direction of the cursor motion 

and the corresponding action routine call on ENTRY. Figure 4-2 does the same for the caM on 

EXIT. 

Communication with other pieces of the environment, such as access control, code 

generation, debugging, efc, is achieved through the action calls on EXIT and ENTRY 

because they provide a convenient synchronization mechanism on the construction and 

modification process. 
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Flgu re 4-1:  Action routine call on ENTRY 
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Figure 4-2:  Action routine call on EXIT 

4.3.3. Unsuccessful Cursor Movements 

An action call on FAILUP is made when an attempt is made to move the cursor out of a 

node that is the roof of the current window. This call gives the action routine the opportunity 

of updating the window allocation: it may cause a change of the current window, most likely - 

pop of the context window stack (see section 2.6) As part of the ALOE implementation 

environment, the window manipulation routines are provided. 

An action call on FAILDOWN is made when the current node has no visible offspring as 

defined by the current unparsing scheme. This call gives the action routine the opportunity of 
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updating the window allocation and change the current unparsing scheme. It will most likely 

push a new window onto the context window stack with the current node as the roof of the 

window and a new unparsing scheme so that the offspring are now visible. This manipulation 

can be viewed as a change of context in the program. 

It has been observed, however, that the action routines follow a very uniform behavior in 

the FAILUP and FAILDOWN cases, namely the opening and closing of nev contexts. This 

jehavior could be abstracted and provided automatically by ALOE. The grammatical 

description would include information as to which operators will be roofs of context windows 

together with the unparsing scheme to use when entering a new context. These changes 

would make the calls on FAILUP and FAILDOWN obsolete, making the writing of action 

routines much simpler. Keeping the calls as they are, gives the ALOE implementor more 

flexibility and control, but our observation is that it is not really needed for these cases. 

The ALOE implementation environment provides a set of routines to implement the 

mechanisms for static and dynamic access control (see section 4.6.2 below), which are 

normally invoked from ENTRY and EXIT action calls. It has been suggested [Notkin 81a] that 

the access control mechanism could also be abstracted and incorporated Into the 

grammatical description. This again makes the writing of these action routines much simpler 

at the expense of some flexibility and control, on the other hand, it increases the complexity of 

the grammatical description. But if the specification language is rich enough to express the 

desired behavior, action routines for these mechanisms are no longer needed. 

As more experience is gained with ALOES and action routines, it is expected that more of 

these mechanisms and applications can be automated and expressed with appropriate 

specification languages in the language description. 

4.3.4. Tree Transformation Operations 

An action call on DELETE is made just before a subtree Is deleted. This is tb allow the 

action routine to use all the information contained in the subtree before it is lost. The return 

value from a DELETE call can indicate that the deletion should be aborted, in which case 

ALOE will not perform the delete >. 

In the case of DELETE, as well as with the other calls caused by tree transformation 

■w-w- 
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operations, semantic information (as well as other information and side.effects caused by the 

construction process through CREATE calls) must be undone. The effects of the modification 

must be reflected in related nodes so that the proper and consistent stata can be kept. These 

effects must be propagated explicitly by the action routine. For different types of nodes and 

different kinds of operations, these changes will require varying amounts of processing. With 

respect to semantics, it is not the same to delete a constant that to insert a large subtree. 

An action call on INSERT is made when a node from , le clipped area is inserted. Although 

it should be similar to the CREATE call, in this case the action routine may not want to set 

default values or do other automatic generation. The insertion process works top down in the 

subtree with an INSERT call being madt ?t every node as it is inserted. So, for non-terminal 

nodes, at the point of the call, its offspring are meta nodes ae in .he case of the CREATE call, 

but those offspring will be immediately filled in after the call returns, as the insertion process 

continues. 

rtn action ciH on NEST is made when a subtree is being nested into a new subtree which 

will replace the original one. The .nest corr nand (see section 2.4.2.2) is only allowed by 

ALOE when the nesting and the resulting subtree are syntactically correct. Depending on the 

language and the application the NEST call may behave as an implicit CREATE, since after 

all, there is a new node being created. 

In terms of the syntactic structure of the tree, the effect of the .nest command can be 

achieved with the following sequence of basic tree modification commands: a .clip and 

.de'eto of ihe current subtree, followed by the construction of the new node, followed by the 

.insert of the clipped subtree. Even though users learn very rapidly to think in terms of these 

basic operations, as evidenced by the experience with the use of different ALOES and with the 

Synthesizer, it is not an eficient way to achieve the desired effect. From the point of view of 

action rou :nes it is even worse because the DE! ETE call will then have to assume that the 

subtrae is really being thrown away with all its information and the effects must be propagated 

and the corresponding nodes invalidated, just to have the set of INSERT callc reconstruct all 

these information again. With the .nest command, all information contained in the subtree is 

kept and in most cases will probably not change. Figure 2-4 shows the effect of an 

application of a nest command. 

An action call on TRANSFORM is made after a transformation is performed on a subtree by 
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mapping it into another, by changing the root node. The .transform command (see section 

2.4.2.2) is i niy allowed when the offspring of the original node and tha new node match. The 

TRANSFORM call may perform the functions of a CREATE call on the new root. The 

difference with the creation is that the offspring of the node are not meta nodes, so only a 

subset of the CREATE functionality would probably be desired. Figure 2-5 shows an example 

of the application of a .transform command. 

As in the case of .nest, the effect of the .transform command can be achieved with the 

following sequence of basic tree modifications: first, the offspring of the current node are 

clipped and deleted; then, the current node is deleted; then, the new node is constructed and 

the clipped subtrees are inserted back again. Again, it is very cumbersome for the user to 

achieve the desired result. The action routines would not be aware of the kind of 

transformation that is taking place and would have to do more than the necessary processing. 

The calls on NEST and TRANSFORM are more efficient because they utilize the information 

that is available and that would otherwise be destroyed by the DELETE calls and 

reconstructed by the CREATE and INSERT calls if the basic commands would have been 

used. 

An action call on TDELETE is made on the original node before the transformation takes 

place but after it has been determined that it is a legal one. The call is necessary because the 

root node will be deleted and substituted by a new node. The TDELETE call can also be 

aborted in which case ALOE will not perform the transformation. Information contained in the 

node may be used and any side effects must be taken care of. It is different than the DELETE 

call because the subtree will not be deleted and information contained there may be kept or 

updated accordingly. 

An action call on EDIT is made after a constant is changed by an .edit command which 

invokes a text editor for editing text constants (see section 3.2.2.1) because ALOE lacks 

support for underlying text editing. This call allows the action routine to validate the value of 

the constant (as it would do in the case of a CREATE). As the only changing structure is tht 

value of the constant, the node itself dees not change at all. One possible action that may ba 

desired, is that of recording that a change was made in a particular subtree. 

If new tree transformation operations are added to the set of editing commands of ALOE, 

corresponding action calls must also be added, so that the action routines can take full 
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advantage of their knowledge about the kind of operation that is taking place and manipulate 

the information and state accordingly. If these transformations are added through extended 

commands, then they apply to a particular ALOE only and the implementation of those 

extended commands will take ca.e of the semantic effects. No general mechanism needs to 

be provided in that case. 

Action routines are used to maintain certain state information in the nodes of the tree. This 

state information can be used for many purposes including access control, to indicate if a 

subtree is correct, if there is an error or if it should be checked, etc. It is important that ALOE 

makes a consistent sequence of calls every time a node is visited: for every ENTRY call, there 

should be a corresponding EXIT call. This would guarantee that if the ALOE implementor 

wants to keep the information in a stack of some soit, the number of push operations (on 

ENTRY) will match the number of pop operations (on EXIT), as the cursor is moved around 

the tree. 

For the purposes of this consistency, a call on CREATE or INSERT should also perform the 

necessary functions of an ENTRY call, since no separate ENTRY call is made. Since all the 

information is available to the action routine , the extra call is not necessary and this also 

helps the efficiency of the action routines interface. Similarly, calls on DELETE or TDELETE 

should behave as an implicit EXIT. The call on NEST should behave as an EXIT on the 

original subtree and as an ENTRY on the new node (maybe through a CREATE). The call on 

TRANSFORM should perform the necessary functions of an ENTRY on the new node (again, 

maybe through a create). 

4.4. Return Values from Action Routines 

The communication between action routines and the ALOE kernel is achieved through the 

return values of the action routines, as well as through calls to routines provided as part of the 

ALOE implementation environment described in section 4.6 below. The ALOE implementation 

environment includes an error reporting interface that provides the means of communication 

between action routines an the user. There are several possible meanings that return values 

from action routines can have: 

• Abort the action. Applies to the CREATE, DELETE and TDELETE calls. !n the 
CREATE call it means that the operation should be undone and a meta node 
should be placed back in that position. The program cursor is positioned at the 
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meta node.   In the DELETE and TDELETE cases it means that the operation 
should not take place. The program cursor is not moved. 

• Continue. The program cursor will be positioned where it would have been 
positioned if there were no errors. If errors occurred, they are shown to the user 
but the program cursor is not repositioned. 

• Redirect the program cursor to the node of the last error reported. In general this 
is used to let the user select the error he wants to correct next. In the absence of 
errors this and the previous case are identical. 

• Redirect the program cursor to a specific node. This is used to force the user to a 
particular node as a result of some action. An example of its use is for access 
control. In a case in which a particular node in the tree should not be entered by 
some user, the ENTRY action call can redirect the cursor to the parent node, thus 
effectively preventing the entry to the node. An error message can be generated 
to explain the reason for this action. 

• To indicate that the current node (the node where the call is made), has been 
replaced by the action routine. 

in some of these cases, the program cursor will be redirected to a different node than the 

one where the call was made. In order to keep consistency, ALOE will find the path from the 

original node to the resulting one and will make all the necessary EXIT and ENTRY calls. If 

the original node was replaced, the path is found starting at the replacement node. 

4.5. Error Reporting 

If there are errors generated by the invocation of an action routine. ALOE will display them 

to the user one by one. After every error is displayed, the user has the option of stopping at 

that error or looking at the next error. This error reporting mechanism provides the 

communication from action routines to the user. Its flexibility allows the user to stop at any 

particular error to correct it. 

When a user decides to stop at an error, the remaining errors are not kept by ALOE. ALOE 

does not understand the content or the kind of error (it only knows the difference between 

errors, warnings and simple messages). ALOE would not know if an error that is pending is 

corrected by a modification that the user makes. ALOE assumes that pending errors will be 

regenerated if the modifications do not correct them. 

One problem with this scheme is that situations may arise in which the same error message 
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will be produced over and over again until the user corrects it. In some instances this may be 

undesirable and the action routines may want to f/7fer some errors already displayed and not 

display them until the user leaves some context. For a discussion of one such error filtering 

mechanism, see [Feller 82a]. 

4.6. The ALOE Implementation Environment 

The ALOE implementation environment provides an environment for the implementor of 

action routines and extended commands. It provides a data encapsulation mechanism for the 

internal representation that defines the data structures that are accessible as well as the 

operations that can be performed on them. These operations provide the facilities for 

inspection, traversal and modification of the internal tree representation. They guarantee the 

syntactic correctness and integrity of the internal representation. The ALOE implementation 

environment actually provides an operational definition of the internal structure. Using this 

environment, the task of implementing action routines and extended commands is much 

simplified and secure (modifying the internal tree representation in undesired ways, is 

precluded). The C programming language [Kernighan 78] does not provide enough 

protection mechanisms to enforce this mechanism. So, the integrity of the internal 

representation can be guaranteed only if it is accessed through the ALOE implementation 

environment. 

The ALOE implementation environment also provides mechanisms for other operations 

such as access control, error reporting, tree traversal, window manipulation, status checking, 

efc. The following sections discuss the main characteristics of these operations. For a 

detailed description of the specification of the primitives provided by the ALOE implementation 

environment, see C. 

4.6.1. Error Reporting Interface 

The ALOE implementation environment provides the primitives for the general error 

reporting interface for action routines described in section 4.5 The error interface provides 

the communication between the action routines and the user. The interface recognizes three 

kinds of messages: errors, warnings and plain messages. The display and window facilities of 

ALOE (see section 2.6) are coupled with the error interface to provide a better user interface. 

The error interface buffers all messaoes caused by an action routine call and then displays 

them, indicating the kind of message and highlighting the associated node. 
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4.6.2. Access Control 

The implementation environment provides a set of ace -M control primitives for restricting 

and enabling editing commands at different levels of the development of the internal tree. 

This includes environment specific extended commands. Constructive commands are 

restricted or enabled as a group, no control of individual commands is provided. It would be 

very desirable to be able to have access control over individual language commands as well. 

A very interesting application of this form of access control would be in teaching a 

programming language. A small subset of the most important language constructs of the 

language is made available in an ALOE for the full language. As the user learns the new 

language, more language commands are made available. Until finally, the whole language is 

made available. The help facility in ALOE is coupled with access control, so only the available 

commands are displayed when help is requested. In the learning process, the user interacts 

with an ALOE with the same user interface. 

The primitives for access control communicate with the ALOE kernel by setting an attribute 

associated with every editing command that determines whether or not the command is legal. 

The kernel checks the value of this attribute before executing the command. The ALOE 

implementor does not access this attribute directly but does so through the set of action 

control primitives. 

ALOE maintains a stack of access control words, each of which controls the set of legal 

commands. When a certain level of the tree is entered, an action routine can push a new 

access control word into the stack, thus redefining the set of legal commands for the new 

level. When the subtree is left, the action routine can then pop the stack to reset the access 

control state to where it was before entering the level. 

As the user moves in and out of subtrees, the action routines use the access control 

primitives to permit or restrict some commands, thus shaping the accepted behavior of 

different users of the environment. Different users may have different kinds of rights. 

These access control primitives provide the action routines with the mechanisms to 

implement static and dynamic access control. Static access control can be set by defining 

the set of commands that are legal upon entering the system root. Dynamic access control is 

implemented through the calls to the primitives that are manipulating the set of legal 

commands. 

■:':- -, • 
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Access control is primarily used for project management [Habermann 82] that synchronizes 

the access to a system by different users with different access rights. For further discussion 

on project management and access rights, see section 5.2.2. 

4.6.3. Tree Traversal 

The ALOE implementation environment provides a set of routines to traverse the internal 

trees. Access to parents nodes and offspring (i.e. internal tree pointers), is not done directly 

but through a set of tree traversal primitives that allow the action routines to move through the 

tree and get to desired nodes. 

These primitives make file nodes (see section 3.2.8) transparent to the ALOE implementor. 

ALOE provides utomatic checkpointing of the files associated with subtrees through file 

nodes. This checkpointing is done whenever a file node is passed through, either by going 

from a node to its parent node or to one of its offspring nodes. This passing is referred to as a 

context change. When a context is changed, if the subtree has been modified, it is written 

out. 

These mechanisms, coupled with the ability to partition the data base (or program) into 

small separately stored files through file nodes, provide a very convenient checkpointing 

capability but suffer with respect to recovery, that is, the ability to undo commands [Archer 

81a], because files are automatically overwritten quite frequently (depending on how much of 

a partition is specified). 

Other tree traversal primitives are provided to action routines for browsing through the tree 

with no context kept and no checkpointing done. They provide a more efficient mechanism to 

move around the tree when no modifications will be made. 

There are some instances in which the action routines need access to the file nodes 

themselves. Sometimes it is desired to stop at a file node without reading in the subtree 

associated with it. Also, symbol table implementation needs access to file nodes because 

symbol table files can also be associated with the file nodes. For these purposes there are 

specific primitives to give access to file nodes. For further discussion on the advantages and 

disadvantages of file nodes, see section 5.2.6. 
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4.6.4. Window Manipulation 

Ad discussed previously in section 2.6, there is not enough screen space to display all the 

necessary information in an ALOE environment. The screen organization is then critical to the 

efficient utilization of the available resources. The ALOE kernel uses a sophisticated display 

and window interface to manage the screen [Feiler 81]. Some of ne window manipulation 

facilities are made available to the ALOE implementor through the ALOE implementation 

environment. Among these facilities is the stack of context windows maintained by ALOE. The 

ALOE implementation environment provides a set of primitives for manipulating this stack. 

Using these primitives, the ALOE implementor can then divide his structure (or program data 

base) into different contexts and have them displayed in overlaying windows. 

If the ALOE implementor is developing a programming environment in which a user is going 

to run programs, he needs a separate section in the screen for the input and output of user 

programs. As part of the display interface of the ALOE kernel, a user window is provided for 

these purposes. The implementation environment provides the necessary primitives to 

manipulate the user window. 

4-6.5. Status Manipulation 

Every node in the internal representation contains an extra field for status information. A 

typical use of the field is to put semantic information in it. This status information is stored in 

the files written by ALOE, thus saving semantic information that can be used again and does 

not need to be recomputed. The implementation environment provides a set of primitives to 

implement a simple scheme for status manipulation that helps in setting and resetting status 

values as well as broadcasting changes. If the action routines implementation requires a 

more complicated status manipulation mechanism [Feiler 82a], the status fields in the nodes 

are accessible through the ALOE implementation environment. 

4.7. Extended Commands 

The ALOE implementation environment is also available for the implementation of extended 

commands. The implementation of these commands can also invoke action routines and use 

the same action routine communication interface the the ALOE kernel uses. Figure 4-3 shows 

the implementor's view of the ALOE system. 

*_ 
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Figu re 4-3: An implementor's view of the ALOE system 

4.8. Attribute Grammars 

As discussed earlier in section 4.2, the motivating application of action routines is checking 

programming language semantics. It would be very desirable to express those semantics 

using a formalism like attribute grammars [Knuth 68]. 

Attribute grammars have been traditionally used in compiler generators [Nestor 

81, Ganzinger 77, Rahia 77]. But compilers deal only with static programs: once the program 

is entered, it never changes. In an ALOE environment it is necessary to deal with dynamic 

programs that are constantly changing as well as with incomplete programs. This situation 

arises due to the interactive nature of an ALOE environment in which the user interacts directly 

with the environment in the process of constructing and modifying his program. 
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The important implementation issue is that of undoing semantics and the propagation of 

changes. When the user makes a change to his program, some semantic knowledge or 

structure already built must be modified or removed. The effects of a modification are rarely 

localized in a particular node. In most instances the effects must be propagated to other 

nodes so that other information and status that is related to the modification can be updated. 

In an ALOE environment it is also necessary to deal with semantically incorrect programs for 

various periods of time: for instance, the user has been notified of his errors, and either he 

decides tc correct them later or he is in the process of correcting several of them. In a 

compiler environment, when a semantic error is found, the program is illegal, or if the error is 

a simple one, and the compiler is smart enough [Graham 79], the compiler will correct it and 

tho program is no longer semantically incorrect. 

The use of attribute grammars for syntax-directed editors has been proposed in [Demers 

81]. An algorithm is proposed for the reevaluation of attributes given a subtree replacement. 

An optimal algorithm is proposed in [Reps 82]. One of the most important aspects of an 

evaluator in an interactive system is that it must be efficient {i.e. it cannot cause any 

significant delay in the response time of the system). If a change is made that affects an 

attribute of a node that is not in the vicinity of the changed node, the corresponding attributes 

of all the nodes in the path between the two nodes must be reevaluated. This is because 

attributes can only depend on attributes from the parent node or from one of its offspring. 

Reevaluation of attributes is not the only task to be performed, but also the determination of 

the set of attributes that must be reevaluated, but this is handled implicitly through the 

attribute relationships instead of having to be done explicitly as with action routines. 

An implementation of the algorithms has been done [Reps 81]. The use of these algorithms 

in a generator of environments will probably answer these efficiency concerns, especial y in 

dealing with symbol tables whose handling in attribute grammar systems has been 

traditionally very inefficient. 

To address some of these efficiency concerns, Johnson and Fischer [Johnson 82] propose 

the modification of attribute grammar formalisms to include non-local attributes and attribute 

flow relations that are not confined to the parent or the offspring of a node. Using this model, 

direct attribute links can be provided between definitions and uses of variables. These links 

can be provided in an ALOE environment through the symbol table manipulation interface and 

action routines [Kaiser 81]. 
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Related also to the efficiency issue is the impact of the tree transformation commands such 

as .nest and .transform (see section 2.4.2.2), on the semantic checking. It is true that these 

commands can be replaced with a series of .clip, .delete and .insert commands. However, 

most of the semantic information already in the tree can be kept. For exar.ple, in the case of 

.nest, the subtree is really not deleted at all (an extra node is inserted >.' the tree), and thus, 

the semantic information need not be undone. The same is true for .transform and any 

other tree transformation operation that could be added. In section 4.,'S we discussed the 

need for a NEST and TRANSFORM action routine calls to take advantage of the information 

provided by the type of operation that is taking place. The attribute grammar mechanisms 

would have to be modified to be able to take the same kind of advantage. This implies that 

subtree replacement, as proposed in [Reps 82], is not necessarily the correct unit for attribute 

reevaluation. 

With attribute grammars it is still necessary to provide a semantic function for every 

att, )ute. In many cases the code in an action routine is basically only the equivalent of 

attribute evaluation. Writing action routines is made much easier with the ALOE 

implementation environment. It is not clear that writing the attribute grammar is easier than 

writing the action routines. 

In section 4.2 we discussed the many applications of action routines. As discussed above, 

attribute grammars (or a suitable variant) could be used to help in automating the generation 

of more sophisticated integrated programming environments. Attribute grammars, as they 

have been traditionally considered, may not be a powerful enough formalism for some of the 

applications discussed. One such application is the automatic generation of program pieces 

and in general the ability to modify the internal struc'ures. Action routines have this ability 

through the ALOE implementation environment. Attribute grammars have been traditionally 

considered as a formalism for language recognizers and not for language generators. 

Another application is the ability of an action routine to abort a deletion of a subtree to 

provide one form of access control. This functionality is not available in an attribute grammar 

system. 

Attribute grammars implicitly specify the dependencies between operators and evaluation 

order information, while action routines have to explicitly implement them. Action routines 

provide a very flexible mechanism but with little control. Some synthesis of both approaches 

is worth investigating as a natural extension of this work. 
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Chapter 5 

Building a Large Integrated Environment: 

The GANDALF Environment 

5.1. Introduction 

The ALOE implementation environment, described in section 4.6 lets the implementor add 

the environment and language dependent functionality needed to develop large integrated 

environments. The key feature of an ALOE that permits this development is the uniform user 

interface that, together with the common program representation, allows the integration of the 

environment pieces. The GANDAUF software development environment [Habermann 

79b, Habermann 82, Notkin 82b] is the most complex instantiation of an ALOE environment 

built to date. In this chapter we discuss the different kinds of support provided through the 

ALOE Generator and the ALOE implementation environment for the development of such large 

integrated environments, focusing the discussion on the development of the GANDALF 

environment. 

The characteristics that make GANDALF a software development environment rather than 

just a programming environment are the incorporation of system version control [Kaiser 82] 

(referred to elsewhere [DeRemer 76], as programming-in-the-large) and project management 

that synchronizes the access to the system data base by a group of members of a project with 

different access rights [Habermann 79a] (referred to elsewhere [Notkin 81b], as 

programming-in-the-many). 

All this functionality is incorporated in GANDALF through the mechanisms of an ALOE. 

System version control is incorporated through a language description of the version control 

structure of the system and through some extended commands.  This structure is checked 
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and validated through action routines. Project management is incorporated through the 

addition of some extended commandc- and through Action routines that implement some of 

the project management functions automatically and transparently to the user. 

Documentation is also added to a GANDALF database structurally as operators of the 

language. Documentation operators are terminal operators of type text constant (see section 

3.2.2.1) which are entered and edited using a text editor that is invoked by ALOE for that 

purpose. 

5.2. ALOE Support for Large Integrated Environments 

The generated environments have four important properties: 

• Uniform User Interface. All interactions with the environment are done through 
the user interface of ALOE. Users thereby have a single language for 
communic ition with the environment instead of a collection of different 
languages or interfaces to communicate with the different pieces or tools of the 
environment. The user need no longer be aware of the specific invocation of a 
particular tool but instead he concentrates on the tasks he needs performed (e.g. 
program editing, program execution, system description, efc). 

• Integrated. All pieces of the environment are now knowledgeable of each other 
and can collaborate towards a common goal, instead of being a collection of 
independent tools [Dolotta 76. Ivie 77]. This integration is supported in an ALOE 

through the use of a common program representation that the different pieces 
access and modify. Invocation of certain functions of the environment is now 
implicit and transparent to the user. For example, the compiler need no longer be 
explicitly invoked by the user but rather the environment can invoke the code 
generator every time a compilation unit (e.g. a procedure) is completed by the 
user. 

• Incremental. As the user progresses through the development of his programs 
the environment can collect information that allows it to perform incremental 
checking and updating. For example, after every construct is entered it can be 
semantically checked, code generation can be performed after a procedure is 
completed, common defaults can be automatically generated as constructs are 
entered, efc. 

• Interactive. Every ALOE generated is an interactive system. The incremental 
nature of the generated environments makes it possible to process small pieces 
of program at a time instead of having to process the entire program. ALOE takes 
advantage of the users' think time at the terminal to perform this processing. 

The ALOE facilities that provide the functionality to support the development of large 

integrated environments  are:     extended commands, access control,  action  routines, 
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environment specific routines, and multiple concrete representations. This support gives the 

ALOE implementor the ability to incrementally develop an environment. He can start with a 

simple syntax-directed editor and then incrementally expand it through the implementation of 

action routines and environment specific routines and adding extended commands. In this 

manner the complexity of the environment can be increased in a controlled form. 

The rest of this section discusses separately each one of these different mechanisms with 

respect to the support they provide for the development of large integrated environments. 

5.2.1. Extended Commands 

The basic set of editing commands discussed in section 2.4.2 can be extended with 

commands that invoke environment specific functions through the same uniform interface of 

ALOE. Typical uses of extended commands are for communication with other pieces of the 

environment. Commands in GANDALF such as .run and .continue communicate with the 

run-time environment. 

Project management functions [Habermann 79a, Habermann 82] which provide, among 

other mechanisms, synchronization between multiple users of the environment, are invoked 

through commands such as .reserve which makes a particular unit modifiable only by the 

programmer making the reservation and .deposit which makes the unit available again for 

other programmers. Commands such as .revise which creates a new revision of a version is 

an example of a sytem version control function [Kaiser 82] implemented via extended 

commands. 

In a simple stand-alone ALOE, searches done with the .find command (see section 2.4.2.1) 

search through the whole program tree. In more complex environments .find only applies to 

the current window or context. For these environments it is useful to include environment 

specific searching commands that understand the structure of the program data base and 

can focus the search using this knowledge. For example, in GANDALF a search for a 

procedure looks within the current version and revision instead of the first occurrence of the 

procedure in the program data base. GANDALF search commands understand the structure 

of GANDALF data bases. 

The complexity of the implementation of extended commands depends directly on the 
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complexity of the function to be performed. The ALOE implementation environment provides 

the basic facilities for accessing and modifying the data base, but cannot predict the kinds of 

operations the implementor might want. This allows the ALOE implementation environment to 

provide flexible facilities for the development of a wide variety of functions. 

Commands such as environment specific searches are straight forward to implement and 

amount to a knowledge directed simple tree searching. On the other hand, commands like 

.deposit are not so trivial because they have to check and validate large parts of the daia 

base before allowing the actu   deposit to take place. 

5.2.2. Access Control 

The access control facilities allow the ALOE implementor to provide different levels of user 

rights for access and nnipulation of the program data base. For example, in GANDALF, only 

the project leader can modify the list of programmers that have access to the data base. This 

is an example of static access control. The status of the program data base can also be used 

to decide whether or not to permit certain operations. For example, a data base that has 

already been deposited (i.z. made public) cannot be edited again. Another interesting 

example is in a list of log messages, where the commands .axtend and .append are 

restricted and only .prepend is permitted. This guarantees a chronological order (most 

recent first) in the logs. These are examples of dynamic access control. 

As discussed in section 4.6.2, the implementation of access control is done through a 

vector of access rights with one entry per editing command. The implementation of access 

control policy for a particular environment is rather straight forward through the use of the 

basic set of routines that manipulate the access control vectors provided by the ALOE 

implementation environment. These routines are normally caMed upon initialization to set up 

the static access control based on the rights of the user and from action routines as certain 

nodes are entered or exited to oet the dynamic access control. 
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5.2.3. Action Routines 

In section 4.2, the many possible applications of action routines wen discussed. Some of 

these applications were anticipated and were the motivation for the design of action routines. 

These include semantic checking and implicit invocation of other tools in the environment 

such as the code generator. Other applications were discovered in the process of developing 

different ALOES especially GANDALF. Examples of these include automatic generation of 

program pieces, lexical analysis, interaction with display management, etc. 

The ALOE implementation environment, discussed in section 4.6, provides a flexible but 

controlled and safe access to the internal representation as well as mechanisms to perform 

common operations such as tree traversal, error reporting and display management, among 

others. 

The design of the action routine interface, discussed in section 4.3, gives the ALOE 

implementor full control in the process of building a program or data base. Action routines 

are called whenever nodes are created, deleted, transformed or visited. In addition, there are 

two special kinds of action routine calls: when an attempt is made to leave a node that is 

currently the roof of the current winaow (a FAILUP call) or an attempt is made to enter a 

subtree that is not currently visible (a FAILOOWN call). In the first case, the action call allows 

the implementor to reassign the root to an ancestor node and to change the window to a 

previous context. !n the second case, it lets the implementor.change the unparsing scheme 

a. alloca^ a new window for a new context. The ALOE implementation environment 

provides the routines for these window manipulations. 

The action routir <* interface also defines certain mechanisms for communication from the 

action routines to tht ALOE kernel (see section 4.4). One of them indicates, for the cases of 

creation and deletion, that the operation should be aborted, that is, that the creation should 

not be allowed and the meta node should be put back in its place or that the deletion should 

not take place. 

The action routine interface permits and supports incremental development of programs or 

data bases by being able to process small units at a time, due to the fact that action routines 

are invoked almost after every interaction of the ALOE. Every action routine invocation only 

needs to do a small part of the U«* allowing the environment to be really interactive by having 

the delay per interaction not too large. 
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As with extended commands, the complexity of the implementation of action routines 

depends directly on the complexity of the desired functionality, The ALOE implementation 

environment cannot predict all the operations that the ALOE implementor wants to perform. 

Simple operations such as status checking, that only operate on the node the action routine is 

called on, are very easy to implement. Other operations that must traverse and update values 

at many nodes within the data base are more difficult to implement. Some other operations 

depend on the existence of support from the other pieces of the environment that are being 

integrated. For example, if an incremental coda generator is not available, then the 

complexity of providing incremental code generation is not in the action routines interface but 

in the implementation of the incremental code generator itself. 

Some specific examples in GANDALF of the notions and applications discussed in this 

section include: automatic generation of program pieces is done, among other instances, 

when a log message is created, the user id and the date of the log are automatically entered in 

the log subtree. On exiting from the list of leaders of a project, which is part of the GANDALF 

data base, if the list is empty an entry is automatically generated by the action routine, thus 

avoiding leaderless projects. 

The ability to abort a construction on a CREATE call is used to avoid duplicate entries in 

several lists, such as the leaders and programmers lists. The same ability in the DELETE call 

can be used in the case of the leaders list to prevent it from becoming empty. 

Typical examples of operations done normally on exits from nodes include: code 

generation, consistency checks, removing of unnecessary meta nodes, stopping lists from 

becoming empty, etc. Most of these functions are then transparent to the user, unless an 

error occurs. This means that the user does not have to worry about this function explicitly 

any more. The support given in ALOE for these functions is very flexible, and indeed these 

functions do not have necessarily to be invoked all the time. For example, code generation at 

procedure exit may not be invoked until the procedure is fully specified in one case, or it is 

invoked always if the ALOE implementor wants to provide support for incomplete programs, in 

either case it is entirely up to the ALOE implementor to make this decision. 
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5.2.4. Environment Specific Routines 

Certain mechanisms of an ALOE require different functionality for different environments. 

Some examples of these mechanisms include the symbol table manipulation, mapping of data 

bases to the file system, window layout definitions, initialization and clean up operations, etc. 

ALOE provides a set of redeflnable routines, invoked by the Kernel, that implement these 

mechanisms. For a complete description of the sei of redeflnable environment specific 

routines see [Medina-Mora 81a]. ALOE provides a set of default implementations for these 

routines that provide simple versions of these mechanisms. The ALOE implementor can 

redefine some or all of them to provide the desired environment specific behavior. For the 

implementation of these routines, the ALOE implementor can use the ALOE implementation 

environment. In many cases the ALOE implementor is able to simply modify the default version 

of a routine, which makes his ta^k easier. 

For a simple stand-alone ALOE the symbol table manipulation need not be anything more 

than a simple name table scheme for unparsing. For environments that need to perform 

semantic checking or code generation through action routines, a more sophisticated symbol 

table manipulation is necessary. The design of the GANDALF environment includes a multi- 

level symbol table, which consists of three levels of symbol tables. At the top level there is a 

single symbol table called the global symbol table which contains an entry for every BOX or 

MODULE. There is one module symbol table for every MODULE and finally at the lowest level 

there is one local symbol table for every compilation context. For a detailed description of the 

GANDALF symbol table, see [Kaiser 81]. 

The symbol table manipulation mechanisms were the motivating force behind the design 

decision of allowing redeflnable routines for certain mechanisms. It became evident, when 

more sophisticated environments were developed, that the simple symbol table manipulation 

mechanisms provided for a stand-alone ALOE was not enough for other environments, 

especially in the case of GANDALF where a multi level design was desirable. But it was also 

clear, that all the complexity of the GANDALF symbol tablus was not necessary for simple 

ALOES. It is likely that in the process of develcoing other sophisticated environments, it will be 

found that the redefinition of some other mechanisms should be allowed, to provide the 

desired functionality. 
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5.2.5. Display Management 

Any ALOE user has some control over the layout of the different predefined windows on the 

screen, described in section 2.6. When more sophisticated environments, such as GANOALF 

are developed, it becomes necessary to provide more types of windows than in a simple ALOE. 

Examples of such windows include windows for debugging information, such as a window for 

monitoring values of variables and a window to display the call stack structure of a running 

program. There is also a need for a user window for input/output of the user program being 

developed using GANDALF. A iuil description of the ALOE window manipulation interface can 

be found in [Feller 81]. 

With this expanded set of windows the screen organization becomes much more important 

and the physical limitations of the screen have a greater impact. The context window stack 

(see section 2.6) also becomes very important and is heavily used in environments like 

GANDALF. The ALOE implementation environment provides the support for manipulation of 

this stack from action routines. 

Two special action routine calls were added to the existing set of calls for this window 

management. They are the FAILUP and FAILDOWN calls, described in section 4.3.3, which 

are used by the ALOE implementor to allocate and deallocate windows in the context stack, so 

that the current context is always the one that is displayed. The context stack window is very 

helpful in showing the current nesting of contexts but takes away one line from the program 

window (where the context windows are overlaid). Similar trade-offs exist for other kinds of 

windows: useful information vs space restrictions. 

One big design problem is that of the user window. As discussed above, it is used to 

provide input/output for the user program being developed but it is a window and not a full 

screen as any user program would normally assume. Difficulties arise if the user program 

wants to make any use of the screen capabilities directly. On the other hand, to provide 

language oriented debugging [Feiler 82a] it is necessary to share the screen between 

program development and program input/output. A solution to this problem was proposed in 

the Copilot system [Swinehart 74] through the use of multiple screens. Better display 

technologies will constitute a big step ahead by being able to provide full screen functionality 

through independent virtual windows or displays in one screen as is done in AT [Ball 80], 

Canvas [Ball 81] and in the display oriented Interlisp [Teitelman 77, Sproull 79]. 
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5.2.6. File Nodes 

In stand-alone ALOES and for simple environments, the developed programs are stored in a 

single file. In more sophisticated environments such as GANDALF, the user is actually building 

large data bases that include many programs. The need for a partition of these data bases 

into separate files, became evident. The concept of file nodes was then incorporated into the 

design of ALOE (see section 3.2.8). 

The ALOE implementor determines the partitioning explicitly in the grammatical description 

by indicating which operators should be roots of separately stored files. In the internal 

representation, a separate file node is inserted on top of these special nodes upon their 

creation. The file node contains information about the name of the file where the associated 

tree is stored. When reading a subtree, the file nodes appear as leaves of the subtree with the 

actual subtree stored in a separate file. 

This partitioning of the data bases in separate files makes checkpointing of files rather easy 

and is automatically handled by ALOE. Every time a user leaves one of these subtrees, if the 

subtree has been modified, it is written out. Another advantage is that the whole data base is 

never read when a session begihs, but its different pieces are read as required. This has the 

advantage that although previous versions of a module in a GANDALF data base are part of the 

data base and of the logical structure, they are hardly ever read unless a user specifically 

wants to look at them. This keeps the in-memory size o. data bases well below the actual size 

of the data base with the obvious advantages in efficiency. The traditional criticism of syntax- 

directed editors of using too much space [Morris 81], is no longer necessarily true. 

File nodes can point to symbol table files that will also be stored separately. This fee^ure is 

extremely convenient for multi level symbol tables such as the GANDALF symbol table. Some 

of the operators where the partitioning takes place coincide with the logical levels of the 

symbol tables. For example, in GANDALF the file nodes associated with a module point to the 

symbol table file for the module symbol table. 

It is possible to couple file nodes with visibility rules and contexts so that every operator 

that is a root of a separately stored subtree can also be the root of a subtree in a window. As 

the user moves into one of these subtrees, a new window can be allocated to display the 

subtree, defining a new context. However, contexts are not bound to the partition determined 

by the file nodes.  In GANDALF there are contexts that get opened at points in *he structure 

I 
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that are not file nodes. On the other hand file nodes and contexts work together in a natural 

manner. 

The original design goal of file nodes was to make them totally transparent to the user, and 

in most cases, they are. It was discovered, during their implementation, that file nodes were 

legal cursor positions for the cases in which they appear as leaves of the subtree of a previous 

context, when the associated subtree has not been read yet. A cursor-in command opens 

the new context and moves the cursor to the associated node. If no new context is associated 

with the file node, then the file node is not a legal cursor position and is then totally 

transparent to the user. 

In figure 5-1, we can see that in the BOXES context, the file node associated with module 

BaslcOps is the current cursor position. After a cursor-in command, the MODULE 

BasicOps context is entered and the cursor is at the module subtree. 

The ALOE implementation environment provides a set of routines for tree traversal (see 

section 4.6.3) that hide file nodes from the ALOE implementor and perform automatically the 

reading and writing of the associated subtrees. For the cases in which there is a need to get 

to the file node directly, especially for those action routines that implement functions related 

to the symbol tabie manipulation, the ALOE implementation environment provides the 

necessary routines to access the file nodes. 

In the original design of file nodes, it was also intended to hide them from the ALOE 

implementor except for the cases in which he explicitly wanted access to them as described 

above. The idea was to handle frem only through the set of tree traversal routines mentioned 

above. Their internal structure design is different from the rest of the tree nodes (for details of 

their internal structure see [Medina-Mora 81a]). This turned out to be a big flaw in their 

design. During their implementation it was decided that file nodes could be legal cursor 

positions for the cases described above, and thus they no longer were hidden from the rest of 

the ALOE kernel and the ALOE implementation environment. 

All the other tree nodes have a similar interna.' structure and can be handled in the 

implementation code in a uniform manner, and only those routines that need to differentiate 

among them will access the fields of the nodes according to their specific structure. But file 

nodes with their different structure must be handled separately and in many parts of the 

implementation code specfal cases for dealing with them had to be introduced.   Their 
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box FRACTIONS Is 

module BasicOps; 

local module Tools; 

local module MylO; 

local module Types; 

Documentation 

ena FRACTIONS 

box LIBRARY 

module String; 

module ThelrXO; 

module Mlsc; 

Documentation 

end LIBRARY 

Context Window: root BOXES 

Window: BOXES Node: FILENODE Class: component Mode: Tree/Expert/Constructing 

module BasicOps 

state: not reserved 

provides: 

struct fract •add(struct fract •frl. •ffZ); 

struct fract •subtract(struct fract •frl. »frZ); 

versions: 

1mp1 1 

Oocufflentatlon 

Log 

end BasicOps 

Context Window: root BOXES MODULE 

Window: MüUULL Node: MODULE Class: component Mode: Tree/Expert/Constnictlng 

Figure 5-1:  Effectof acursor-in command on a file node 

implementation had an impact on the implementation of almost every aspect of ALOE, thus 

making their iricorporation difficult. If the operating system provides a good virtual memory 

implementation, the need for file nodes disappears, because the operating system will read 

the pieces of the data base only when they are explicitly referenced- 
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5.2.7. Parser Interface 

An ALOE implememor may want to provide a parser for programs built with text editors so 

that they can be incorporated into the ALOE environment. Every ALOE, upon invocation can 

invoke a parser that would build an abstract syntax tree from the text representation of a 

program. These parsers must be written explicitly for any desired environment, they ars not 

automatically generated. The GANDALF environment does not include a parser, insre are no 

GANDALF data bases built as text files. 

The automatic generation of parsers from the grammatical description is a natural 

extension of this research. It would be desirable to get a parser for the language for which an 

ALOE is being generated so that all previously built prog ams can immediately be 

incorporated. 

3.2.8. Multiple Concrete Representations 

The ALOE implementor can define multiple views of the abstract syntax through the use of 

several unparsing schemes in the grammatical description (see section 3.2.5). In this manner 

the implementor defines the visibility ruler. ior his language. Different unparsing schemes can 

be defined to provide concrete representations at different levels of abstraction and detail. 

Possible uses of multiple concrete representations in specific ALOES include the following: 

at the top level the modular structure of a program can be shown, another unparsing scheme 

can be used to show all procedures and their specifications, another can show a procedure 

call cross reference, another can show the full syntactic expansion of the program and yet 

another can show a different syntax. For example, as shown in figure 2-7, in an ALOEQ,., a 

program can be unparsed with PASCAL syntax for those constructs that are equivalent in both 

languages [Feiler 82b]. Other examples of the use of multiple concrete representations in 

general are described in section 2 5. 

Visibility rules can be coupled with the use of context windows. Figure 5-2 shows different 

context windows of a GANDALF data base. At the BOXES level, the names of all the modules 

are shown with the cursor placed at the module B»s1c0ps. At the MODULE BaslcOps level 

the state of the module with respect to project management, the specification of the facilities 

provided by the module and its versions are shown with the cursor placed at the 

u 
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box FRACTIONS Is module BasicOps 

module BasicOps: state:' not reserved 

provides: local module Tools ; 

-local module MylO; struct fract •add(struct fract »frl. »frZ); 

local module Types; struct fract *substract(struct fract «frl, »frZ); 

Documentation 

end FRACTIONS ■ 

box LIBRARY 

module String; 

module ThelrlO; 

versions: 

Impl 1 

Documentation 

Log 

end BasicOps 

module Mlsc; 

Documentation • 

end LIBRARY 

Context Window: root BOXES Context Window: root BOXES MODULE 

STD impl 1 revision 4 

with Tools, Types, Myl 0, /LIBRARY/TheirlO; state: reservad by gandalf 

default <no defau1ts>; procedure add 

revision»: 

* 
1 

instantiations: 

3 

procedure substract 

procedure main 

2 

state: reserved by gan dalf 

Documentation 

Log 

end 1 

Context Window: root BOXES MODULE IMPLEMENTATION Context Window: root ...  REVISION 

Figure 5-2:  Context Windows in aGANDALF Environment 

implementation '1', At the IMPLEMENTATION 1 level, the specification of the implementation 

is shown with the cursor placed at the most recent revision. The REVISION 4 level shows all 

its procedures with the cursor placed at procedure main. 

All these context windows are not shown concurrently on the screen as the figure may 

ib 
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seem to indicate, but they are overlaid in the seme section of the screen (referred to as 

program window in section 2.6). Through cursor movement, these context windows are 

allocated and deallocated dynamically, and a one line context stack window shows the 

current nesting of contexts. With a better display technology, all these windows would not 

have to be necessarily overlaid. Every one of these windows, as well as all clipped windows, 

have their own cursor position. A possible extension to the basic capabilities of ALOE could 

include the ability to have more than one window (or stack of context windows) on the same 

tree or data base. 

/• traced •/     malnO 

{ 
struct fract »frl; 

struct fract • fr2; 

char op; 

frl • getfractO; 

fr2 « getfractO; 

op • getop(); 

1f (op •■ 'a') 

answer(frl.fr2."+"1ad<J(frl.frZ)); 

else 

if (op •« 's') 

answer(f rl,fr2,"-",sul)tract(drl,f r2)); 

Context Window: root BOXES MODULE IHPLEMENrATION REVISION PROCEDURE 

Window: PROCEDURE Node: IF    Class: stat    Mode: Tree/Expert/Constructing 

Figure 5-3:  Procedure Context Window in a GANDALF Environment 

Figure 5-3 shows a normal GANDALF screen with the PROCEDURE mal n context currently in 

the program window. The one line context stack and status windows and the command 

window are also shown. 

■ ^vr- OÄ1      -•- 
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In the GANOALF environment other types of information are also shown to the user. These 

include documentation that are pieces of *ext associated with the whole data base and with 

every module; log messages that keep track of the changes performed in the data base; 

debugging information that is provided through two independent windows: the monitor 

window used to show the values of certain requested variables as they change during 

program execution and the callstack window that shows the structure of the call stack at any 

point during program execution, for a detailed discussion of the representation of debugging 

Information to the user, see [Feiler 82a]. 

There are cases in which an ALOE implementor may decide that certain nodes must be 

unparsed but the user must not modify them once they are created. The unparsing scheme 

language includes a special command that indicates that a subtree may be unparsed but it 

should not be visited. One example of its use in GANOALF is the date and user identification of 

a log message that are automatically generated and unparsed with the log message but that 

cannot be modified by a user. 

5.3. Summary 

The support provided by the ALOE system for the development of a large integrated 

environment, gives the ALOE implementor flexibility tc shape the resulting environment. 

Through the implementation of action routines, the ALOE implementor decides when and how 

much semantic checking is performed, establishes the communication with other parts of the 

environment, efc. Through extended commands the ALOE implementor adds the necessary 

commands to provide the functionality needed for his particular environment. Through 

access control the ALOE implementor controls the behavior of the environment with respect to 

different kinds of users. With multiple unparsing schemes, the ALOE implementor provides 

multiple views of the environment and decides when and how much of the environment's data 

is shown at any particular time. 
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Chapter 6 

Evaluation and Technical Issues 

6.1. Introduction 

In this chapter, an evaluation of the desiQii decisions discussed in previous chapters, is 

presented, with an emphasis made on the technical issues involved. Some of the important 

aspects of the design of ALOE discussed and evaluated in this chapter include: its user 

interface, the effect that the equipment chosen has on the design, the features of 

programming languages that are particularly impacted in the design of a syntax-directed 

editor, the impact that building a generic system has on the design, efc. 

A comparison is made with a text editing environment as well as with other syntax-directed 

editors, followed by a discussion of some strategies used in the design and implementation of 

the ALOE system and an evaluation of the success rate of the design decisions. 

6.2. User Interface 

6.2.1. Command Language Syntax 

The command language syntax of an ALOE defines the communication language between 

users and environment. Some of the vocab' ^ry of the language changes from ALOE to ALOE, 

because the language operators are part of the vocabul&ry: they are the constructive 

commands of an ALOE (see section 2.4.1). The basic editing commands remain constant but 

extended commands are specific to every ALOE. 

The use of control character keys as synonyms for editing commands provides the 

necessary flexibility for a system with both novice and expert users. Novice users will use the 

I JPACa BUNK-NOT FILMLD 
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explicit name of a command (or its leading characters) and, as they gain experience, they will 

use the control character synonym. Cursor pad function keys are used to invoke cursor 

movement very successfully, other function keys could also have been used for the most 

common editing functions, as is done in the Synthesizer [Teitelbaum 81a]. 

Multiple language commands in one line saves intermediate states that could be 

considered unimportant and enhances the system response time by updating the display only 

after all commands have been applied. On the other hand, this could make it difficult for the 

user to recover from an error if the sequence of operators was not the desired one. 

6.2.2. Editing Expressions 

In most other syntax-directed editors and environments, programming language 

expressions are entered as text and parsed by the editor. Some systems [Teitelbaum 81a] are 

hybrid, that is, the rest of the program structure :s entered constructively and expressions are 

entered as text. Other systems [Donzeau-Gouge 80, Archer 81b] simply support parsing for 

input of all the language constructs. Other systems [Alberga 81] even support incremental 

parsing for the whole program. 

There is a clear motivation for parsing expressions: most users are used to text editing, 

parsing expressions is rather easy, and expressions are difficult to deal with structurally if one 

thinks of the hierarchical structure of expressions as specified in a BNF formalism [Backus 

59]. Furthermore, expressions are displayed in infix form whereas to think of them structurally 

amounts to dealing with them in prefix (or postfK) form. 

One of the research goals of this thesis was to investigate the feasibility of using struct ral 

editing at all levels of the language, including expressions. To this end, a different kind of 

grammatical description was developed (see chapter 3). An important aspect of its design is 

that it provides a way to express a flat structure for expression^ instead of a hierarchical one. 

In this manner, all expressions are at the same syntactic level instead of in a hierarchy. 

Experience with the use of ALOES for several different languages showed that it was easier 

than anticipated to construct expressions. While unparsing, all expressions are automatically 

parenthesized by ALOE, using precedence values specified in the grammar (see section 3.2.4). 

The difficulties arise with editing the expressions.   Special commands, such as .nest and 
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.transform (see figures 2-4, 6-2 and 2-5), that are not available in other systems (with the 

exception of the Synthesizer, which has been extended to support some kinds of 

transformations [Teitelbaum 82]), are very helpful for editing expressions. 

The commands .clip, .insert, .nest and .transform are very successful because they are 

conceptually simple. The user has no difficulty in understanding the effects of the tree 

transformations performed by them. On the ether hand, there are some transformations, such 

as a change from the expression ' a + b • C to the expression'(a + b) • c', shown in 

figure 6-1, which implies a simple change of the evaluation order or the ooerations. The user 

may be used to thinking of this change as a simple insertion of parenthesis with a text editor. 

We could describe this transformation as a rubber pull in which a node of the tree is pullet, 

upwards as if the edges of the tree were made of rubber. The change would be very difficult 

to express in terms of the modification of the tree structure, as can be seen from the syntax 

trees in the figure. 

Display Syntax Tree 

1f ( <exp>  ) 

d « a +    t> • c ; 

If ( <8xp> ) 

d • (a + b) * c 

<8xp> 

Figure 6-1: The Rubber-Pull Tree Transformation 
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A set of more complex tree transformation operations could be provided to solve the 

problem for the example above, and other similar ones. However, these complex operations 

may be difficult to understand and their effects difficult to anticipate. There could also be 

examples, such as a very large expression, for which the set of operations cannot be easily 

applied to achieve the desired transformation. The semantic implications are significant: an 

action routine call type (see section 4.3) would have to be added for every one of these 

transformation operations. The implementation of action routines would be made more 

difficult because coda would have to be written for every one of these operations and would 

have to understand all the semantic implications of the transformation. On the other hand, 

these kinds of transformations would be very rarely used and so, their complexity is probably 

not cost efficient. 

As the user can edit subexpressions, the user only needs to deal with those parts of the 

expression that must be modified. Any modification can be achieved with the use of the set of 

simple tree transformation operations of ALOE. AS these changes are performed in a very 

localized context, the extent of the semantic effects due to the changes is very limited. 

It could be said that the user should have the option to decide whether he wants to enter 

expressions textually or structurally. Indeed, it would be rather easy to provide an expression 

parser in the current ALOE system through action routines: a terminal operator of type 

constant is added to class express/on; the user invokes that operator and gives the textual 

expansion of the expression as the constant's value. The action routine parses the 

expression and substitutes the node with the resulting subtree. 

The argument in support of user choice could also be taken to imply that parsing should be 

provided at all levels of the language. The basic flaw with this argument is that the major 

motivation for structured editors is precisely that of dealing with programs structurally rather 

than nxtually. It is very confusing if the user has to enter his programs as text pieces and see 

and edit them as structures. There are some language-oriented editors such as the PDE 

system [Alberga 81] which support text editing for all constructs of the language. This system 

works in conjunction with an incremental parser that updates an internal parse tree after 

every change is made to the text. Section 6.8.4 gives a detailed comparison between PDE 

and ALOE. 

Most users, if given the choice, will choose the method or tool they are familiar with 
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especially if they feel comfortable with it. This precludes them from investigating and learning 

the benefits of new tools or methods. This applies not only to the problem of editing 

expressions but applies in a more broader sense to the general problem or structure editing 

vs. text editing. 

What makes expressions different from statements is that they are always shown in infix 

form. There is a natural tendency to deal with statements structurally and this is not 

necessarily the case with expressions. Evidence of this situation is the hybrid design of the 

Synthesizer [Teitelbaum 81a]. 

Display Syntax Tree 

\f ( <exp>  ) 

d «   a + b 

if ( <exp> ) 

d    • (a + b)  • <9xp> 

<axp> 

IF 

ASS 16 

TIMES 

PLUS <exp> 

Figure 6-2:  Nesting an addition into a multiplication 

As we have already stated, one goal of a friendly user interface is to make it easy to 

accomplish simple and frequent actions. However, the fact that something was easy to do 

with some tool does not mean that the underlying concept is simple. For example, 

modifications that represent complex tree transformations can sometimes be accomplished in 

a simple manner with a text editor and might be much more difficult with a structure editor. 
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Other tree transformations like 'a + b' into '(a ♦ b) • c' amounts to a simple .nest 

followed by the construction of 'c', as can be seen in figure 6-2. ALOE supplies the 

parenthesization of the resulting expression automatically. The user might have forgotten to 

include them if he was using a text editor. 

It is very possible that the problem of dealing with expressions structurally can be solved by 

unpa-sing them in prefix form just as they are entered. Unfortunately this has two important 

drawbacks. First, users are too used to reading and understanding expressions in infix, even 

if they like to enter them to a structure editor or to a pocket calculator in priJix or postfix form. 

Secondly, we are generating editors for existing programming languages and would like to 

keep the syntactic correctness of the concrete representation of programs. However, this 

could also be solved by providing several unparsing schemes {see section 2.5), one of them 

unparsing to the legal syntactic form, and others to provide a better structural view of the 

programs. 

6.2.3. Lists and Optional Operators 

Lists and optional operators are related in several ways. This relationship can lead to some 

confusion in the behavior of an ALOE. All lists (I.e. variable arity non-terminals) in an ALOE can 

be empty. When the current meta node is an element of a list, a «Ccr), used as a command, 

indicates the termination of the list expansion. If a meta node was the only element of the list, 

the result is an empty list. As we already discussed in section 3.2.2.2 there is a need for a 

differentiation in the grammatical description between lists of zero or more elements and lists 

of one or more elements, and probably with lists of two or more. If this difference is not made, 

syntactic inaccuracies can be generated in the concrete representation. For example, an 

empty list of variables in a declaration in C [Kernighan 78], such as 

Mnt  ;' 

which is a syntax error: "missing variable name(s)". Tnis can be solved in the current system 

by unparsing something special when the list is jmpty, but the syntactic error still exists. If 

this were a list of one or more elements, a meta node would be left in the list when the last 

element is deleted, so that it never becomes empty. 

Another concept missing from the grammatical description is that of optionality. To solve 

this problem, an ALOE implementor would include the operator EMPTY in the classes where 

the operators are optional and the user could choose EMPTY as the operator whenever he 
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did not want to instantiate the corresponding optional operator. To improve the imr 

interface, ALOE recognizes all operators that start with the characters EMPTY as special 

operators. Whenever <cr> is typed, and the current meta node is not in a list, EMPTY is 

automatically applied as a constructive command if there is an operator in the current class 

that starts with the characters EMPTY. 

Consequently <cr> as a command has two meanings, that although are similar, could lead 

to some confusion. Empty lists and the EMPTY operator are two different structures. One is a 

non-terminal node and the other is a terminal one. Cursor movement and editing commands 

behave differently. 

Another important problem with empty lists and EMPTY operators is their concrete 

representation. If nothing is unparsed for them and the cursor is moved into them, no 

highlighting is done and the user will be confused as to where the program cursor is. The 

information is included in the status window (see section 2.6), but that only tells the operator 

name and does not give its location. So, the user would know that the program cursor is at 

the EMPTY node but not where it is. 

The unparsing scheme of a list can specify a special unparsirg to be used when the list is 

empty. Similarly an EMPTY operator can be un-arsed as a simple blank character. When the 

cursor is not at the node, its unparsing ^ virtually meaningless, but when the cursor is moved 

into the node, the single blank character io Highlighted clearly indicating the cursor position. 

Even with these facilities, dealing with optional operators can become very cumbersome in 

the cases of languages such as ADA [DoD 80] where there are many optional operators. One 

possible solution would be to design several types of optional operators; those that are very 

likely to be used, those that are not used frequently and those that are very rarely used. 

Unpars^g could be done accordingly, the frequently used ones always shown whereas the 

rarely used ones only shown by special command. 

Action routines can automatically make the nodes of rarely used optional operators into 

EMPTYs during the CREATE action call (see section 4.3.1) of the operator that creates the 

subtree where these optionals appear. This is also another useful application for multiple 

unparsing schemes: the normal unparsing scheme hides the undesired optionals, an 

extended command can be used to show them (by changing the unparsing scheme). 
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The Synthesizer [Teitelbaum 81a] has a special cursor movement command that lets the 

user go to an optional part whereas the normal cursor movement command skips these 

optional pji-ls which are not even displayed if they have not been instantiated. The user must 

know that there is an optional part there. The proposal mentioned above, of using special 

unparsing and a specific extended command to show the optional parts is similar to the 

Synthesizer's solution. 

6.3. Device Issues 

6.3.1. General Characteristics 

Display characteristics play an enormous role in interactive systems. Characteristics such 

as bandwidth, size of the screen (measured by the amount of information that can be 

displayed), ability to highlight parts of the screen, treatment of the screen as a two 

dimensional display rather than as a one dimensional scroller, input devices, etc., can make a 

big difference in the usability of an interactive system independently of its real functionality. 

• 
For the purposes of our research we decided to investigate the feasibility of ALOE for a 

particular class of widely available terminals with a minimal set of hardware capabilities which 

included cursor addressing, insert and delete of characters and lines and highlighting 

capability. The initial implementation was built for the Concept-100 family of terminals [HDS 

79], which has precisely these capabilities, and is being extended to other similar terminals. 

If the bandwidth of the communication line were large enough to allow instant redisplay of 

the screen. ALOE would simply redisplay the whole screen after every interaction. As this is 

not the case even for the highest bandwidths normally available (e.g. 9600 baud) it is 

necessary to have an intelligent display interface that would update the screen optimally using 

the terminal capabilities to update only the parts of the screen that change after every 

interaction. To this end. ALOE uses the display package developed for UNix,m EMACS [Gosling 

81a, Gosling 81b]. The package uses an optimal updating algorithm. 

The smaller the bandwidth the more important the display package becomes. As the 

bandwidth increases, the optimal algorithm becomes less critical. At a certain point the cost 

of redisplaying a whole line becomes cheaper {i.e. faster) than the sequence of character 

insert and deletes necessary to update it, because of the time it takes to perform the update 
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algorithm. Any redisplay algorithm should take this into account, the one ALOE uses [Gosling 

81b] does. 

As discussed in section 2.3, highlighting the area cursor is very important in the context of 

structure editors. The area cursor really makes the difference in emphasizing the structure of 

the program as the user moves through it. Highlighting this area cursor is a device 

characteristic that is critical if the area cursor concept is to have a real feedback and 

information value for the user. 

The terminal highlighting capabilities will have an impact on the user interface of ALOE. The 

optimal situation is that highlighting be specified independently from the characters 

themselves, so that, in order to update a screen in which the only change from the previous 

one is the highlighting, the old highlighted characters and the new ones do not have to be 

redisplayed. This situation typically occurs on cursor movement which is one of the most 

frequent operations in an ALOE. The Concept-100 terminal has this capability. 

The highlighting caoabilities of most terminals require that the involved characters be 

redisplayed. This will work fine as long as the bandwidth is large. Some tenninals have a 

rather unacceptable characteristic: for every line with highlighting two extra characters from 

the display are used to set the highligmmy. This is a source of confusion to the user. 

Finally, the type of highlighting is also important. As said before the purpose of highlighting 

is to show the area cursor, thus making a strong emphasis on the structure of the programs. 

Reverse video has worked just fine for these purposes. A blinking highlight would be 

distracting (end even annoying for large cursors). 

6.3.2. Windows 

The concepts of contexts and windows (discussed in section 2.6) are very successful in 

achieving the desired functionality. They also have proven their usefulness in other 

interactive systems suchs as the Display Oriented Interlisp [Teitelman 77], Smalltalk [Ingalls 

78], and others. The implementation of windows is only possible when the screen is 

considered as a two dimensional display instead of as a one dimensional scroller (as in 

Mentor [Donzeau-Gouge 80]). 

The size of the screen (typically 24 lines of 80 characters for the types of terminals 



100 EVALUATION AND TECHNICAL ISSUES 

considered) is definitely a limiting factor in the usefulness of windows, not only because of the 

limi'ed amount of space, but also because such windows cannot be easily separated (with 

clear borders) or partially overlaid (as we overlay pieces of paper on the top of a desk): 

borders would take away precious space needed for real information. 

One of the first improvements would be to take advantage of terminals with larger screens 

or with additional local memory. Several screen images could be stored in the terminal's 

memory and then switching from one screen image to another would be instantaneous. This 

capability could be used to help solve the problems, discussed in section 2,6, related to the 

switching between different displayed contexts, the coexistence with user program I/O as 

well as to provide a larger window size for several of the windows mentioned in that section. 

Beyond this, screens with raster scan displays are more suitable for windowing and 

distribution of different kinds of information [Teitelman 77, Sproull 79, Ball 80, ball 81]. The 

use of these kinds of displays would greatly improve the user interlace (and the usability) of 

ALOES. 

Nevertheless there are some limiting faciors to the use of windows and contexts. First of 

all, given any display size, it would be used up rather quickly, and unfortunately, real screen 

size cannot be increased arbitrarily. On the other hand the amount of partially overlaid 

windows that the user can manipulate without getting confused is also limited. This means 

that, even with larger and better displays, screen organization and management for ite optimal 

use is still an extremely important consideration in the design and implementation of any 

interactive system. 

6.3.3. Wrapping Long Lines 

There can be instances in which a line in a program is wider that the window used to 

display it. It is important to have some way of accessing those parts of the line that do not fit 

in the window. As a first approach to a solution ALOE scrolls the window to the left when the 

cursor includes a long line and tries to display the entire cursor. There are also explicit 

editing commands to scroll the window left and right. Unfortunately many times simple cursor 

moving commands in and out of those lines causes the screen to scroll back and forth which 

can be relatively annoying. 
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A solution to this problem, adopted by the Synthesizer [Teiteloaum 81 a], is to move the 

starting point of a line to the left margin, if it would start past some predefined column position 

that varies according to the width of the window. The following lines would then be indented 

relative to this line. If a phrase (comments, expressions, efc.) is too long, it is broken and 

indented relative to its starting position in the previous line. 

The solution to this problem is to have flexible or conditional line breaks, as proposed by 

Oppen [Oppen 79], incorporated to the unparsing schemes language. In this manner, lines 

are broken depending on the length of a particular line and the available width of the window. 

6.3.4. Enhancements 

As discussed in previous sections, even though the terminals we are dealing with have 

many advantages and are definitely sufficient for simple ALOES, they are still very limited for 

the kinds of integrated environments that we want to develop, such as the GANOALF 

environment described in chapter 5. The number of windows is very limited and some of them 

must be overlaid. A better display could provide a larger collection of windows. 

With respect to user input to ALOES, the current system only supports keyboard input. 

Although the use of control characters and function keys has greatly improved the user 

interface, a pointmq device, such as a moose can be used to point to specific parts of the 

screen as in the Eravo text editor [Lampson 79]. Coupled with the display's improvements 

discussed above a pointing device would make possible the use of menus that have been 

used successfully in other interactive systems [Teitelman 77, Ingalls 78]. The pointing device 

could also be used to indicate cursor movement by moving it to different locations on the 

screen. 

6.4. Language Features 

In this section we try to identify those programming language features that are important in 

the ALOE context, that is, in the context of structured editing. 

It is cei ainly the case that the language features that are well structured are best exploited 

by a structure editor. Whereas features that lack structure, such as macros and comments 

(see following sections) are definitely difficult to handle. 
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One interesting aspect of programming languages that is greatly impacted by structured 

editing is that of ambiguity of the language sentences. A typical example of ambiguities Is the 

well known dangling else problem of certain languages. The ambiguity only exists in the 

concrete representation, because it has to be parsed %id else parts have to be associated to 

the corresponding // statements. In an ALOE the user always indicates by construction the 

kind of statement he wants built (this is the principle behind the constructive approach of 

program building), and therefore, there is no ambiguity as to which else part matches every it 

statement. 

As long as the text produced by ALOE'S unparser will not be parsed, indentation can be 

used to indicate the matching else parts. In the extreme case of an application of an ALOE for 

which the text will be parsed elsewhere, action routines can generate dummy else clauses to 

solve the ambiguity of the concrete representation. 

Another typical example involves constructs like ' f un (arg)'. The ambiguity here is that 

in certain langu^jes it could either be an array reference or a function call. Compilers must 

use semantic knowledge to disambiguate the construct. In an ALOE this is definitely not 

necessary bee .it/ the user has already indicated the kind of construct he wants built. The 

concrete repress' iation of the construct is totally unimportant except for feedback purposes. 

Other types of syntactic sugar like punctuation marks such as commas, semicolons and 

parenthesis are often incorporated into languages to disambiguate constructs or to make the 

parser's job easier. As parsers are no longer needed, syntactic sugar can be much simplified 

and some of it even eliminated. New concrete representation styles can be adopted that give 

the user better feedback about the real structure of his program but that do not have to be 

parsed and neither has the user to type them. 

This also affects language design because it is now easy to deal with ambiguous 

languages, it is no longer necessarily bad feature for a language to have ambiguous 

constructs (with respect to parsing) as long as their visual representation is unambiguous (by, 

for example, assigning meaning to indentation level). 
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6.4.1. Macros 

The idea of macros and structured editing clash in some important ways. Macros 

conceived just as text substitution have no structure to them. Macros are designed with a 

preprocessor in mind: the preprocessor performs the textual substitution before the parser 

processes the program. The program that the use"- sees is different (in its form) from the one 

the compiler gets. In the context of structured editing there is no such thing as text 

substitution. 

Most uses of macros in languages such as C [Kernighan 78] are due to lack of richness of 

the language itself. Language constructs such as constant definitions, in-line procedures, 

type definitions and enumerated types, efc, should be used instead of macros (version 7 of C 

fixed the last two items in this list). Some other uses include modification or abbreviation of 

language syntax, and these can be solved through different concrete representations through 

unparsing schemes. 

The design of the ADA programming language [DoD 80] solves the problem of macros by 

providing some of the language constructs mentioned above as well as generics, some 

instances of which can be thought of as some kind of structured macros. 

6.4.2. Comments 

Comments are extremely important because they are the only way to provide in-coda 

documentation, which is fundamental for good programming style and practice. The problem 

with comments is that they have no internal structure. They are mostly designed with lexical 

conventions and designed to be thrown away by the lexical analyzer and not kept or 

processed by any other tools. Comments are normally not considered to be part of the syntax 

of a language, or a meaningful language construct. 

A comprehensive design of structured comments can be added to any language 

incorporating them into the abstract syntax. This design would differentiate between different 

types of comments and their concrete representation would use different formatting styles for 

them, and would, therefore, make it much easier to understand documentation. 

ALOE itself does not understand the concept of comments (as it understands the concept of 

optionality through the EMPTY construct, see section 6.2.3). Comments are incorporated into 
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ALOES directly through the grammar as string constants.   As part of the design mentioned 

above, AL^E could understand comments as a special concept in itself. 

One of the biggest problem with comments is that even though in the context of ALOES, 

parsers are no longer needed, there is sometimes the need to write a parser to translate 

programs into ALOE'S internal language representation to be able to incorporate existing 

textual programs into the environment. The parser must then understand comments and 

must be able to decide where and how to associate the comments with the internal structure. 

As there are no fixed rules as to how comments are associated with the language constructs 

and every user has his own conventions, the task of the parser is close to impossible. There 

will always be situations in which the comment will be associated with the wrong construct. 

For example, some people like to put a comment before the statement it is referring to and 

others like to put it after the statement. In many situations the reader must understand the 

comment to be able to determine which construct it is referring to. 

Comments are very necessary in programming languages but they should not be 

unstructured. New programming language design should incorporate comments in a 

structured way associating them with the construct of the language. The PL/CS language of 

the Synthesizer [Teitelbaum 81 a] includes commented statements. These comments are also 

used as placeholders for the whole statement for elision purposes (to hide implementation 

detail to be able to show a greater context in the screen). The structured comments design 

should not be too simplistic or restrictive so that the user will not feel that he cannot place all 

the comments he would like to include. 

6.4.3. Extensible Languages 

ALOES have difficulties with extensible languages: the syntax tables, generated by the ALOE 

generator, are static, and thus new operators cannot be added. This precludes the possibility 

of making new operators or types become legal operators of the language. For example, it 

would be desirable to add every new type as a legal operator of class type. The problem is 

that the syntax tables contain the permanent structure of the language and information in 

them is used when files are read or written. The temporary operators would have to be kept in 

a separate table where information is not used for storage but only for user interface. 
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6.4.4. ALOE for Other Structures 

Throughout this dissertation we have emphasized the generation of ALOES for progranfiming 

languages and systems because they are their motivating application. ALOES can also he 

generated for other languages and structures that can be expressed using ihe grammaticü' 

description. An important example is Aloegen, the ALOE for creating and editing grammatical 

descriptions. The "'ntax of the grammatical description can be expressed in terms of itKif 

3nd thus, the same c^neration process can be followed as for other ALOES. Othe' interesting 

examples include an A.OE for SCRIBE [Notkin 82d] and an ALOE for a mail system [Nolkin 82a]. 

SCRIBE [Reid 80] is a document production system. SCRIBE documents are very structured. 

Most of them are divided into chapters, sections, subsections, ofc. Within these structures 

there are other structures that specify special formatting characteristics such as tables, 

examples, itemized lists, etc. These stnjctures can be expressed using the grammatical 

description of the ALOE generator. The terminal lerators cf such an ALOE are paragraphs of 

text. 

An electronic mail message has a fixed structure. It has a header and a body. The header is 

divided into several fields, such as the identification of the message, the sender, the 

recipiente, the subject of the message, efc. This structure can be easily described using thg 

grammatical description and an ALOE can be generate^ V it. Invocation of the mailer system, 

once the message is composec* anvi the reading of mest, -es from .he mail boxes of users, 

would be done through action routines and extended commands. 

Before any realistic use of ALOES for these applications can be done, it will be necessary to 

add support for direct text editing within ALOE instead of invoking a separate text editor for 

large pieces of text. 
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6.5. Language Issues 

6.5.1. Editing language vs. Edited Language 

Traditional programming environments provide a collection of languages. Every tool of the 

environment has its own language, so the overall language is an ill-formed one with no 

consistency or uniformity. The user must remember which tool of the environment he is 

communicating with, 

By providing a uniform user interface to an integrated environment through ALOE, the 

language of communication is the command language of ALOE. Part of the vocabulary of this 

language changes from ALOE to ALOE: the operators of the language are the constructive 

commands of ALOE (see section 2.4.1). 

It is important to note the difference between this editing language and the language of 

program or structures being edited (the edited language). ALOE does not use this edited 

language as its language of communication, but, on the other hand, there is an important 

connection between the two languages: the constructive commands of the editing language 

(i.e. part of its vocabulary) represent the constructs of the edited language. 

An extension of the capabilities of the ALOE system could include the possibility of editing 

the editing language, so that editing macros could be provided. 

6.5.2. The Grammatical Description 

The ALOE grammatical description is operator oriented, that is, the emphasis is placed in 

the constructs of the language rather than on a collection of productions. When the ALOE 

iiiip!ementor assigns names to the constructs of his language in the grammatical description, 

he is actually defining part of the vocabulary of the environment language (the editing 

language). 

The separation of abstract syntax and concrete representation, which allows the 

specification of .multiple concrete representations, permits variants in the form of the edited 

language. We can think of them as different views of the language. 
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As we have already pointed out, some important concepts are missing from the design of 

the grammatical description. It is lacking lists with at least one element {i.e. lists that cannot 

be empty), It should have a way of expressing optionality and one should be able to include 

associativity values in addition to precedence values for operators. 

Non-empty lists are necessary to be able to avoid syntactic inaccuracies in certain 

constructs of languages that require them (see example in section 6.2.3). Optionality is a 

concept that appears in most languages and it would be much better if ALOE would 

understand the concept rather than include it by way of the special treatment of operators 

that start with the characters EMPTY (see section 6.2.3). Associativity values are needed for 

the correct parenthesization of expressions that include non-associative operators, for 

example the expressions ' a - b - c'and'a - (b - c)'are not equivalent. 

All of these missing concepts should be included in the next implementation. The problems 

caused (as already discussed) are well understood and their solution is feasible. They were 

not added to the current version because other additions and improvements were considered 

more important and not because any important technical difficulties. 

6.5.3. Unparsing Schemes 

The experience with the ALOES generated so far tells us that, when the formatting of 

programs is done automatically and in a reasonable and consistent way, the users rapidly get 

to like it. The mair reason for this is that users do not have to deal with formatting explicitly 

any more. It is also the case that several formatting styles can be incorporated into any ALOE 

through multiple unparsing schemes. 

In sections 2.5 and 5.2.8 we included many examples of the different uses of multiple 

concrete representations. Unparsing schemes provide a very powerful mechanism to achieve 

the translation from the abstract syntax structure into several concrete representations. The 

ability to change from within an unparsing scheme, the scheme used to unparse the offspring 

of a node provides some ability to unparse based on context. For example, in the GC [Feiler 

79] to PASCAL [Jensen 74] translator [Feiler 82b], referred to in the example of figure 2-7, the 

GC increment construct '1++' is unparsed in the PASCAL version as '1 :B J + 1' except 

when it is located as the increment in a for loop, in which case it is unparsed as the keyword 

TO. Similarly, the decrement construct '1--' would be unparsed as D0WNT0 if found in the 

for loop. 
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' However, the unparsing scheme language does not provide by itself all the desired 

functionality of a general unparsing mechanism. The basic problem is that the concrete 

representations are fixed because they are statically determined by the unparsing schemes. 

Some dynamic elements can be obtained if the unparsing schemes are combined with action 

routines. 

An example of such an occurrence, taken from the GC to PASCAL translator [Feiler 82b], is 

the return statement in a function. In GC, the statement is unparsed with vhe keyword 

return followed by the value returned. In PASCAL the value is assigned to the function name 

in the body of the function. When the statement is being unparsed, the unparsing scheme has 

no access to the name of the function at ail, and so, direct translation cannot be 

accomplished. Action routines can be used to achieve the desired effect in the following way: 

the structure of the return statement is defined to have two offspring instead of one. The 

action routine associated with the return operator will fill the name of the function. In the 

unparsing scheme for GC only the value returned is shown. In the PASCAL scheme the name 

of the function is also unparsed and is available at time of unparsing. 

Another similar example occurs in the implementation of Aloegen [Notkin 82c], the ALOE 

used to create and edit grammatical descriptions. The main unparsing scheme is used to 

show the structure of the grammar as is shown in the example of figure 3-1. The other 

unparsing schemes are used to produce the syntax tables that form the language knowledge 

of an ALOE. At some point in the generation of these tables it is necessary to know the sizes of 

some lists. This knowledge is not available directly from the unparsing schemes. This 

problem is solved in a similar way as the previous example: an additional offspring is defined 

for such constructs, its value is filled in by the action routine, it is unparsed when needed and 

ignored by the other unparsing schemes. 

The solutions to the problems mentioned in these two examples use the basic mechanisms 

of ALOES: action routines and multiple unparsing schemes. However, they require the 

redefinition of the abstract syntax structure to achieve the desired result, even though the 

logical structure of the language is not changed. It is the lack of processing power at 

unparsing time what forces these modifications. In section 3.2.1 we discussed the difficulties 

associated with the modifications to the structure of operators in the grammatical description. 

In order to provide a more general mechanism, several additions to the unparsing scheme 
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language must be made. These include control structures, such as conditional unparsing 

schemes that could test several conditions and unparse based on them, loop constructs for 

unparsing elements of lists, and functions specified in the unparsing schemes and invoked by 

the unparser, that would compute the necessary information without requiring a change in the 

structure of the operators. Other simple extensions would include mechanisms to deal 

intelligently with long lines and the ability to specify conditional line breaks, as was already 

mentioned in section 6.3.3. 

6.6. Generic Systems 

It is different to build a syntax-directed editor for a particular language than to build a 

generator of such editors. Some design decisions are influenced by this difference. In 

particular, design decisions must be made to provide solutions with general mechanisms 

rather than providing a specific solution that solves a problem for one language but not for 

another. 

For example, in the design of the command language for an editor built for a particular 

language, such as the Synthesizer [Teitelbaum 81a], the command names for editing and 

language commands can be chosen so that they would not have similar leading characters in 

their names. This allows a single naming convention to be used for both kinds of commands. 

In a generic system, the names of language commands are not known in advance, they are 

determined by the language description. The choice of different naming conventions for both 

types of commands lets the ALOE implementor select good mnemonic names for his language 

constructs without having to be concerned with the names of editing commands. It may also 

be desirable to make the user aware of the difference between editing and language 

commands. Introduction of new editing commands will not cause the ALOE implementor to 

rename some of his language commands that could have simitar leading characters in their 

names as those of the added editing commands. 

Another example is the choice of cursor display. A single character cursor may be 

ambiguous in some instances (as seen in figure 6-3). In a particular language there may not 

be any situations in which a single character cursor is ambiguous, or there may be just one 

language construct that is ambiguous (as in the case of labeled statements in PL/CS). If an 

editor is built for these languages, the single character cursor may be a good design decision, 

but in a generic system it is important to provide a more general mechanism, such as the 

area-cursor of ALOE, that solves the problem of these potential ambiguities. 
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In an editor for a particular language, unparstng rules are part of the code of the 

implementation. In a generte system, these rules must be specified in some language. The 

unparsing scheme language of ALOE described in section 3.2.5 is one such language. 

6.7. Comparison With Text Editing Environments 

It would be unfair to compare structure and text editors for creating and editing programs, 

in terms of the time it takes to do it. The aims and goals of both types of systems are very 

different. For the text editor the contents of the file being edited is unimportant, it only 

understands about characters (and possibly lines and screens). No knowledge or support 

(except for some small support for formatting programs and template expansion in some 

editors) is given when the text editor is used for editing programs as opposed to editing a 

document. ALOE is knowledgeable of the contents of the entity being edited. The ALOE 

structure allows the environments to take advantage of a large collection of information for 

processing while the user is entering and modifying his program. This means that an ALOE 

may be doing much more processing than just ensuring syntactic correctness. This can 

include semantic checking, automatic generation of program pieces, lexical analysis, 

invocation of the code generator, efc. (see section 4.2). 

The compilation cycle is a more realistic unit for comparison (for aloes for programming 

languages). It can be defined as the time (or number of keystrokes) it takes to construct a 

program and get it to compile correctly in the syntactic sense (i.e. no syntax error left). This 

often requires successive invocations of the text editor and the parser. 

It is also true that the text editor and the corresponding parser were not designed as an 

environment, so we would be using two almost unrelated systems together, for comparison 

against an integrated environment. This means that the two systems are not directly 

comparable in terms of time or keystroke count 

On the other hand, the combination of UNIX1"1 EMACS [Gos'ing 81a] and the Make facility 

[Feldman 79] in UNIX1"1 can form an interesting compiling environment in which UNixtm 

EMACS understands the error messages caused by the compiler invocation (through line 

numbers associated with these errors), and places the user in the position in the text file 

where the error occurred. This is of great help in reducing the time it takes to get a program 

correctly compiled. But, of course, UNIX1"1 EMACS is not preventing any kind of errors nor is it 
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doing any extra processing while the user is editing his program, except for some support for 

formatting programs of certain languages that it knows about. 

ALOE guarantees the syntactic correctness at all times. This correctness is with respect to 

the abstract syntax structure. A concrete representation can be provided that would be 

syntactically correct if the program text were to be parsed, even though it may not be the main 

concrete representation preferred by the user. As previously discussed. ALOE may also be 

doing other kinds of processing. Formatting is also handled automatically and several 

formatting styles can be supported by an ALOE. These styles are expressed in terms of 

unparsing schemes and are not modifiable by the user, A possible extension of ALOE could 

allow the user to define unparsing schemes as long as he does not get more access to nodes 

than what the defined unparsing schemes give him. 

Another comparison measure is the size of the program files stored as text by a text editor 

and stored as trees by ALOE. ALOE stores semantic information (currently one computer word 

per node in the tree) that can be reused when the program tree is read. If this were not the 

case, the size of program tree files would be smaller that the corresponding text files. With 

the added semantics and some space used as a file header to identify the language of the 

ALOE and other information, the sizes of program files are comparable for large programs [i.e. 

of at least 60 lines of code), while for smaller programs the text files can be of anywhere from 

half the size to comparable size of the corresponding tree files depending on the amount of 

white space (i.e. indentation) contained in the text file. The reason for this reasonable file 

sizes is that all the keywords, punctuation marks and all the white space required in the text 

file are not stored in the tree file. 

6.8. Comparison With Other Syntax-Directed Editors 

In this section we will discuss the similarities and differences of ALOE with other syntax- 

directed editors. We do not intend to discuss all of these editors, but we have picked a set of 

well known editors for this comparison. 
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6.8.1. The Cornell Program Synthesizer 

The Cornell Program Synthesizer [Teitelbaum 81a] goals are quite different from ALOE'S. 

This explains the different design decisions. First and most importantly, ALOE is a generic 

system, that is, it is a generator of syntax-directed editors instead of an editor built "by hand" 

for a particular language. The Synthesizer is a syntax-directed editor implemented for PL/CS 

[Conway 76] a small subset of PL/I. The Synthesizer does not use different naming 

conventions for editing and language commands. Editing command names were designed so 

that they wouldn't conflict with the PL/CS language commands. 

The Synthesizer was implemented for a microcomputer and for this reason its power has to 

be limited to work for small programs. ALOE was designed to permit the generation of large 

integrated software development environments such as GANDALF [Habermann 

79b, Habermann 82], described in chapter 5. 

The Synthesizer is a hybrid editor that combines a structure editor for the high level 

language constructs (e.g. declarations and statements) and text editor for low level 

constructs, called phrases (e.g. expressions, assignments and parameter lists). This design 

has an important impact on the user interface. Curse movement is different depending on 

where in the program the cursor is. At a high level structure it moves structurally, at phrases it 

can move character by character. 

Construction commands also have this difference. At the high level, they are commands to 

introduce program templates, at phrases they are plain text. This implies that after the input 

of a phrase and after editing it, the phrase must be parsed into the internal structure. 

Information about parenthesization must be kept in the internal structure so as to be able to 

reproduce the phrase as the user typed it. 

ALOE provides a uniform interface at all levels of the program structure. There is no need to 

parse these expressions, and subexpressions can be handled separately. The Synthesizer 

cannot treat subexpressions as structures in themselves. In particular, a subexpression 

cannot be pointed at and extracted from an expression and inserted elsewhere. Section 

6.2.2 contains an explicit discussion of the differences between text and structure editing of 

expressions. 

The program cursor in the Synthesizer is a single character cursor as opposed to the area 
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cursor of ALOE. This causes some ambiguities in cases such as the one in figure 6-3 where 

the cursor is at the 1 abe 1 and it is not clear if it refers to the label only or to the whole labeled 

statement. The area cursor of ALOE solves this ambiguity and also makes more emphasis on 

the structure of the program. In ALOE the cursor can be placed at a list, that is, including all 

elements of the list. In the Synthesizer the cursor is only placed at single elements of lists, in 

order to apply editing commands to lists, the first and last element of the list must be 

specified. A single character cursor would be ambiguous if the cursor were allowed to point 

to the whole list. A possible advantage of the single character cursor is that, if used to trace 

program execution, the cursor is changing rapidly and a single character cursor may be 

better in this case than the area cursor [Teitelbaum 81b]. 

label:      IF (K > 0) 
THEN statement 
ELSE staXnant 

Figu re 6-3:  Single character cursor in the Synthesizer 

The Synthesizer is not only a syntax-directed editor, it is a programming environment that 

integrates interpretation and debugging facilities. Its characteristics as a programming 

environment should be compared with LOIPE [Feiler 82a, Medina-Mora 81b] an integrated 

programming environment based on ALOE. 

Current developments of the Synthesizer include the development of a generator of 

Synthesizer-like editors with the use of attribute grammars for expressing the semantics of 

language templates [Reps 82]. Section 4.8 contains a discussion of the use of attribute 

grammars in syntax-directed editors. 

6.8.2. The MENTOR System 

The MENTOR System [Donzeau-Gouge 80] is a structured editor for PASCAL [Jensen 74]. It 

also has goals that are different from ALOE's. MENTOR is based on parsing of input for all 

levels of the language although it also supports some form of constructive editing. The 

MENTOR implementors decided to support parsing of input because users were more 

comfortable with writing their programs as text from their experience with text editors. 

The problem with parsing on input is that users enter their programs as text but then they 
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must deal with them structurally for editing and inspection.  It can be very confusing if the 

user enters his program as text, but must edit it as structure. 

MENTOR has a scroller type display interface, similar to that of some LISP systems 

[Teitelman 78, Perdue 74] instead of the two dimensional display interface of ALOE. This 

means that after every interaction, if the user wants to see the result of his action, the current 

display is not used and the subtree on which the user is focused must be redisplayed again. 

MENTOR uses MENTOL, a tree manipulation language, as its command language. MENTOL is 

used for all manipulations from cursor movement to searches using pattern matching to tree 

transformation and context sensitive checking. Cursor movement can be particularly 

cumbersome because, to get feedback on the result of the cursor movement, the subtree 

must be redisplayed again instead of the immediate feedback given by ALOE which only 

changes the highlighting in the screen. 

Complex pattern matching structures can be handled in MENTOL; to perform searches, for 

example, the command 

9TXT F § 1f $V1 thtn X:-JV2 «Ist $V3 

will look in the subtree denoted by the marker 9TXT for the next IF statement containing an 

assignment to variable X as its then part. This seems to be a rather complicated way of 

achieving the desired search. The .find command in ALOE, described in section 2.4.2.1, 

provides better feedback by automatically displaying the result of the search. It is much 

easier to invoke, and it is incremental so that, if the first attempt at locating the desired node 

fails, the command can be repeatedly invoked without having to specify the search parameter 

again. 

The MENTOR user can control the depth to which a subtree is displayed. This concept is 

referred to as holophrasting in [Hansen 71]. As MENTOR does not have multiple concrete 

representations and, since its display interface is not interactive, it must redisplay the 

subtrees every time the user wants to see them, the concept of controlled depth is 

fundamental in MENTOR. In this manner, larger contexts can be visualized and it also takes 

less time to display a particular subtree. Unfortunately, simple depth restrictions do not 

necessarily convey the desired level of abstraction in languages such as C [Kernighan 78]. 
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For example, certain depth level may show all the details of a declaration including its 

initialization and none of a nested statement. Constructs at the same conceptual level some 

times do not appear at the same deplh level. 

Another problem cf this type of interface is that the context around a particular construct is 

not shown when the cursor is at the construct. The user must move the cursor up to some 

node in the tree and redisplay again if he wants to see the surrounding context. ALOE will 

always place the area cursor in the middle Of the window that is currently being used for 

display of the program. In this manner the sunounding context is always visible. Different 

abstraction levels can be achieved through multiple unparsing schemes that also are 

knowledgeable of the structure of the language, and will show constructs at different depths 

but the same contextual level. 

MENTOR is not an integrated programming environment. Its internal representation is not 

used by a compiler to generate code, nor is this step automatically invoked as is the case in 

LOIPE [Feiler 82a, Medina-Mora 81 b] or GANDALF [Habermann 82, Notkin 82b] (see chapter 5). 

The MENTOR user must explicitly unparse his tree into a text file and give it to a compiler for 

processing. The compiler, of course, will duplicate many of MENTOR actions. There is no 

direct support for program execution, only for program building. 

MENTOL is used to build routines to check context sensitive properties of PM3CAI. programs. 

MENTOL is not a general purpose programming language but a tree manipulation language 

with the ability to manipulate attributes in nodes. The ALOE implementor through the use of 

action routines has all the support of the ALOE implementation environment, described in 

section 4.6, to write the equivalent routines in C [Kernighan 78] 

6.8.3. The Emily System 

The Emily System [Hansen 71] was one of the first efforts with syntax-directed editing. It is 

a menu-driven system, with selections made with a light pen pointing at a graphics display. 

The programmer constructs a program by selecting a BNF production to replace the current 

non-terminal node. The BNF productions in Emily include the concrete representation for the 

constructs (keywords, separators, terminators, etc.), and so, the programmer stilt had to be 

aware of the details of the concrete syntax. 
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Emily was not very fast (the major delay was in filling the screen after every interaction), and 

experience with it showed that it took longer to construct a program using Emily than with a 

text editor, even though there was a considerable saving of keystrokes. It should be noted, 

however, that fewer errors were made when using Emily. Simple editing operations, such as 

the deletion of a construct, required several interactions, instead of one, thus making the 

editing of program somewhat difficult. Emily was not an integrated system, in order to 

compile a program, text was produced an had to be parsed, the internal structure created by 

Emily was not used. 

6.8.4. The PDE System 

The PDE1L system [Mikelsons 80] is a program development environment for PL1L, an 

extended subset of PL/I. It is a successor of LISPEDIT [Alberga 81], an environment for 

LISP/370. PDE1L is not a syntax-directed editor, but it is language-oriented, that is, the 

interactions with the system are based on the language constructs, but the user manipulates 

the textual representation of the program. POE1L is an integrated environment that 

incorporates to the editor an incremental parser, an interpreter, a compiler and a debugger. 

As in ALOE, the user interface of the editor provides a uniform user interface to the 

environment. 

By manipulating the textual of his program, a user can introduce syntax errors to his 

program. For example, the user realizes that there is a missing END statement because the 

indentation of his program is not what he expects. Syntax errors, when detected, are 

displayed in two different forms. When text that is inserted in the program cannot be parsed 

consistently with the surrounding text, it is highlighted to indicate so. When text is deleted In 

such a way that the remaining text cannot be parsed, the deleted text is replaced with one or 

more meta symbols that indicate the nature of the missing material. In ALOE, syntax errors 

simply cannot occur. 

PDE1L has a large set of editing commands that are applied to the current focus, the 

equivalent of the cursor in ALOE. The focus represents a portion of the parse tree. The focus 

can be changed through cursor motion commands. The user is then dealing with his program 

structurally, but he still has to enter it as text. The user has to concentrate both in the 

concrete form and in the content of his program. In ALOE, the user always deals with his 

program structurally and can concentrate in its content without worrying about its concrete 

form. 
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PDE1L has a very sophisticated display algorithm [Mikelsons 81] that considers the relative 

importance of the language constructs with respect to the focus, when deciding which 

constructs are urr^rsed and which are elided. One problem with the algorithm is that the 

relevant parts of the parse tree are traversed twice to achieve the correct unparsing. 

in PDE1L, all input is entered in a special input section of the screen and not directly where 

it will be inserted. When the user finishes the input it is parsed and inserted in the correct 

place. Feedback on errors is not given until the text has been parsed and inserted and not as 

it is typed. 

6.8.5. The Interlisp System 

The Interlisp System [Teitelman 78] is a very sophisticated programming system for LISP. 

The simple syntax and semantics of LISP lend themselves very well to more structured 

manipulation of programs, its interpretive nature lends itself better to the edit/interpret 

approach. Interlisp incorporates powerful facilities like structured editing, sophisticated 

debugging techniques, automate error correction, the analysis subsystem, the programmer's 

assistant and others. Many of the ideas present today in syntax-directed editors were first 

introduced in LISP environments. The display-oriented programmer assistant [Teitelman 77] 

makes excellent use of sophisticated display and window manipulation mechanisms [Sproull 

79]. 

interlisp does not provide a uniform user interface. There is a different interface depending 

on the tool of the environment the user is communicating with: the editor, the debugger, the 

analysis subsystem, ere. Different interfaces for different tools focus the user's attention on 

the tool rather than on the program being developed. 

Input to Interlisp is given as text end it is parsed and inserted at the current position. 

Editing is done structurally. This means that the user has to deal with both text and structure 

when he is editing his program. This is not so important for LISP systems because of its very 

simple syntax, although syntax errors can be made and feedback from the system Is only 

given after all the input has been processed and not as it is typed. 
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6.9. Design and Implementation Strategy 

This section discusses a set of strategies used in the design and implementation of ALOE 

qualified by the experience gained through the actual implementation. 

6.9.1. Frequent Operations 

» 
As discussed in chapter 2, one of the goals of an editor like ALOE is that, frequent 

operations, such as cursor movement and simple constructive and ediiing commands, should 

be easy to provide and perform, They should also be as efficient as possible so as not to 

cause a significant delay in the response time of the system. 

One identifiable problem in ALOE in this respect is the input of variables, a very frequent 

operation in any language oriented editor. In ALOE, the name of the operator (e.g. IDENT) or 

its synonym (e.g. a quote mark (')) must be entered before the variable name, which is entered 

in the command line or as an answer to an explicit prompt. The suggestion to add lexical 

specification or lexical routines described in section 2.4.1.2, would solve the problem of 

having to type a command or a synonym for terminal operators. If the user makes a typing 

error, the variable must be deleted and entered again. This is an implementation flaw in the 

current ALOE that will be fixed in future versions, by providing text editing capabilities for 

terminal operators. This problem does not occur in systems such as the Synthesizer 

[Teitelbaum 31a] in which expressions (which contain the variable names) are entered 

directly as text and edited with text editing commands. 

6.9.2. Infrequent Operations 

There are some attractive features from the theoretical point of view that could be added to 

a syntax-directed editor. It could be very difficult to implement them, and would probably be 

used very rarely, and thus would not impact in any significant manner the performance and 

usability of the editor. Examples of these features include complex tree transformations that 

could be useful in a very limited set of cases and which will not be applied frequently. On the 

oUier hand, experience with these transformations would help understand and experiment 

with new ways of interaction with structures. 

For example, the tree transformation that would change the expression * a + b •  c' into 
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• (a + b)  •  c* (see figure 5-1), which could be thought of as a simple parenthesization 

operation, involves a complex :ree traiisformation as can be seen from the figure. 

On the other hand, the user would probably use sequences of .clip, .insert, .nest, 

.transform, .delete and constructiva commands to achieve the same results before realizing 

that the desired transformation is actually one of the provided ones. One explanation of this 

situation is that the transformation performed by these commands are simple transformations 

and it is easier for the user to identify their need and their usefulness that it would be with the 

more complex tree transformations. We have said before that the .nest and .(transform) 

commands, described in section 2.4.2.2, were very useful commands. It turns out that, they 

are really not used that often, because the situations in which they can be applied do not 

occur very frequently. 

It should also be noted that the impact of .transform in the action routine interface is a 

significant one. As discussed in section 4.3.4, the action routines implementation has to take 

Into account all possible semantic effects that such a transformation implies. Mr^e complex 

tree transformations would only make this task more difficult. 

6.10. Conclusions 

6.10.1. Successful Aspects 

In summary, the aspects of the design of ALOE that have been more successful are: 

• Separation of abstract syntax and concrete representation, which permits the 
structure of programs, not their form, to be emphasized. 

• Multiple concrete representations, which permits different views on the same 
data, and also different contexts and levels of abstraction. 

• Uniform user interface for large integrated environments, which allows the user to 
deal with his environment as single system instead of as a collection of unrelated 
pieces. 

• Area cursor which permits to place the emphasis on the program structure. 

• Synonyms for editing and language commands, that provide the necessary 
flexibility for novice and expert users and help in constructing and editing 
expressions. 



120 EVALUATION AND TECHNICAL ISSUES 

• Efficient use of the limited screen space, as a two dimensional display, given the 
restrictions imposed by the choice of terminal. 

• Support  for  large   integrated   environments,   which   makes   it  possible  to 
automatically invoke other tools of the environment. 

• Data base partitioning which makes possible the definition of different contexts in 
large integrated environments. 

• Flexibility for the ALOE implementor to shape the behavior of the environment. 

6.10.2. Missing Features 

In different places in this dissertation, we ha\e pointed out some of the important missing 

features in the design of ALOE, and at the same time, solutions to these problems have been 

propoaed. 

• Underlying text editing capabilities, fundamental for editing variables and 
constants and for development of ALOES for structures other than programming 
languages. 

• Lexical knowledge, which is extremely importG!! for a better interface for 
constructing and editing expressions. 

• Complex tree transformations (although we have argued that their inclusion might 
not be cost efficient). 

• Some form of an undo command, which is very necessary for a smooth recovery 
when errors are made. 

• Non-empty lists and optional operators in the grammatical description. 

• Control constructs and function invocation in the unparsing scheme language. 

6.10.3 Further Research 

Solution to these missing features would constitute a natural extension of this work. Other 

areas that could also be considered for future research include: 

• User interface. More work and experimentation is necessary to fully understand 
the important aspects and fine points of the user interface of syntax-directed 
editors. 

• For context sensitive processing, some form of synthesis of action routines - that 
provide a flexible mechanism but little control - and attribute grammars • with 
some modifications to increase their efficiency • seems worth investigating. 

- ----- -* 
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• Important aspects of language design can be influenced by the existence and use 
of syntax-directed editors. 

• We have succeeded in producing a generator of extensible syntax-directed 
editors that support the development of large integrated environments. The next 
step is to produce a generator of such environments, that would automate more 
aspects of their development. 

^        i 
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Appendix A 

Editing Commands 

Editing commands are common to all ALOES. These commands are invoked by typing a dot 

(".") followed by the name of the command and a carriage return. Only enough characters to 

designate the command unambiguously need be entered. For the common commands, one 

character usually is sufficient. All editing commands also have synonyms defined which are 

entered without either the dot or the carriage return and are, in general, control characters. 

Some commands require arguments, such as the name of a file, the name of a tree, etc. 

These arguments can be given directly after the command or in response to ALOE prompts. 

When a prompt is given, a default value is shown enclosed in square brackets. A simple 

carriage return indicates that the default value should be used. Otherwise, the value entered 

is used as the argument. 

The editing commands for an ALOE are described next. The synonyms for each command 

are shown in parentheses following the command name. The "$" symbol in synonyms stands 

for the <'escape> character. 

A.1. Cursor Movement 

Cursor-in 

.JN   (<cursor-pad-down>) 
Moves the cursor into the first legal offspring of the current node 
according to current unparsing scheme. Cursor-in automatically does a 
cursor-next if at a terminal or non-visible node. 

WO    PAUS BUMt-NOT niMBD 
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Cursor-out 

..OUT   (<cursorpad-up>) 
Moves the cursor to the parent of the current node. 

Cursor-next 

..NEXT   (<cursor-pad-right>) 
Movas the cursor to the next sibling of the current node if one is defined 
according to the current unparsing scheme and the setting o' the 
cursor-follows mode. If no sibling is defined, the cursor is then moved to 
the next sibling of the parent of the current node, recursively. If the 
current node is the last in the tree (as defined in pre-order) then the 
command has no effect. 

Cursor-previous 

..PREVIOUS   (<cursor-padleft>) 
Moves the cursor to the previous sibling of the current node if one is 
defined according to the current unparsing scheme and the setting cr the 
cursor-follows mode. If the current node is the leftmost node »lien the 
cursor is moved to the previous sibling of the parent of the cunent node. 
If the current node is the leftmost node in the tree (as defined in pre-order) 
then the command has no «ffrci 

Cursor-home 

..HOME (<cursor-pad-home>) 
If the current node is not the root of the current window, cursor-home 
moves the cursor there Otherwise, it moves the cursor to the root of the 
previous context window. 

Cursor-back 

.BACK   (tb) 
Moves the cursor back to its previous position, provided that the last 
command was a cursor moving command. 

Find 

.FIMD<string>   (tf) 
Searches the tree for a matching variable name, constant name, operator 
synonym, or operator name. The search is restricted to the current 
window. If no string is given one is prompted for. If a carriage return (<cr>) 
is typed for the string prompt the string specified in the previous search is 
used. 
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Rfind 

.RFIND<string> (txb) 
Searches the tree in reverse for a matching variable name, constant name, 
operator synonym, or operator name. The search is restricted to the 
current window. If no string is given one is prompted for. If a carriage 
return (<cr>) is typed for the string prompt the string specified in the 
previous search command is used. 

Class 

.CLASS <string> (txtn) 
Searches the tree for the first node in the specified class. The search is 
restricted to the current window. If no string is given one is prompted for. 
If a carriage return (<cr>) is typed for the string prompt the string specified 
in the previous search command is used. 

Rclass 

.RCLASS <string>   (txtp) 
Searches the tree in reverse for a node in the specified class. The search 
is restricted to the current window. If no string is given one is prompted 
for. If a carriage return (<cr>) is typed for the string prompt the string 
specified in the previous search command is used. 

First 

.FIRST    (txtb) If the current node is on a list, then the cursor is moved to 
the first item on the list. Otherwise the cursor is moved to the first sibling. 

Last 

.LAST    (Txtl) 
If the current node is on a list, then the cursor is moved to the last item on 
the list. Otherwise the cursor is moved to the last sibling. 

Next 

.NEXT    (tn) Searches the tree for the next declaration or statement 
depending on your context. The target is set to a declaration as you enter 
a procedure and changed to a statement when you enter the statement 
list. The search is restricted to the current window. 

Previous 

.PREVIOUS (tp) Searches   the  tree   for   the   previous   declaration   or 
statement depending on your context. The target is se' to a declaration as 
you enter a procedure and changed to a statement when you enter the 
statement list. The search is restricted to the current window. 
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Numerical Arguments for Cursor Movement 

.<number> 
The explicit cursor moving commands (cursor-in, cursor-out, 
cursor-next, cursor-previous, and cursor-home) have an optional 
parameter that precedes them. The numerical argument indicates how 
many applications of the given command should be made. The argument 
is not a command in that it cannot be used alone. 

A.2. Help Information 

All help information available through these commands is displayed in the help window. 

Operator Help 

.HELP   (tx?) 
If the current node is a meta node, .HELP displays the list 

of applicable language commands (and their synonyms). Otherwise, the 
list of editing commands is displayed. 

Command Help 

.?  (.7) 
Displays the list of editing commands (and their synonyms). 

A.3. Tree Manipulation 

Clip Subtree 

.CLIP <tree-name>   (tk) 
Clips current subtree into a named tree which is kept in the clipped area 
separate from the main tree. The name of the tree can be specified 
following the command or it will be prompted for. 

Insert Subtree 

.INSERT<treename>   'txtl) 
Inserts a clipped subtree at the current node (which must be a meta node) 
provided that the root operator of the subtree is legal in this position. If no 
tree name is specified one is prompted for. 

i. 
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Extend List 

.EXTEND   (te) 
Extends a list with a new meta node. If the current node is a list node 
(variable arity node) then an element is created at the beginning of the list. 
If the current node is a member of a list then the meta node is inserted 
immediately after it. 

Extend List Backwards 

.BEXTEND   (txtb) 
If the current node is a member of a list, it places a meta node immediately 
before the node. It is not applicable anywhere else. 

Prepend to List 

.PREPEND   (txta) 
If the current node is a member of a list, it places a meta node at the 
beginning of the list. 

Append to List 

.APPEND   (txte) 
If the current node is a member of a list, it places a meta 

node at the end of the list. 

Delete 

.DELETE   (td) 

Replace 

.REPLACE   (tr) 

Deletes the current subtree. If the subtree is an element of a fixed arity 
node, then a n 3ta node is inserted in its place. If the subtree is an 
element of a list, the element is removed completely from the list. 

Deletes the current subtree. If the subtree is an element of a fixed arjty 
node, then a meta node is inserted in its place. If the subtree is an 
element of a list, the element is replaced by a meta node of the 
appropriate class. 

Nest 

.NEST <operator name>   (tn) 
Takes the current subtree and nests it into a subtree that will have the 
operator as root operator. The operator name can be given following the 
command or it will be prompted for. A nesting that would result in an 
invalid tree is not permitted. If the new subtree has more that one 
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offspring, it finds the first match (independent of unparsing scheme) for 
the current subtree in the new subtree. 

Transform 

.TRANSFORM <operatorname>   (tt) 
Transforms the operator of the current node to the desired one. For the 
transformation to ■succeed, the new operator must be in the same class as 
the old one and the respective offspring must also match exactly. 

A.4. Input/Output 

Read Program 

. READ PROG <filename>   (txtr) 
Reads a tree from a file. Checks that the file contains a valid tree. 
Replaces the current tree with the new tree. Checks with the user if the 
current tree has not been saved. The file name can be given after the 
command or given to the ALOE prompt. 

Load Tree 

.LOADTREE<filename>   (txtv) 
Loads a tree from a file into a clipped area. A clipped window is assigned 
to it with the name of the window taken from the file name. The name of 
the file can be given after the command or given to the ALOE prompt 

Write Tree 

.WRITE   (txtw) 
Writes a tree into a file in tree form. The default prompt is the file name 
given at invocation of ALOE. 

Unparse into File 

.UNPARSE<file-name>   (txtt) 
Unparses the tree into a text file. The file name can be given after the 
command or to the ALOE prompt. Useful for producing printouts. Note that 
this command differs from .WRITE only in the form the written file takes. 
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A.5. Exit ALOE 
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Quit and Save 

.QUIT   (txtf) 

Cancel 

.CANCEL   (tc) 

Saves the current tree in a file in tree format and leaves ALOE. It uses the 
file name given at invocation. 

Leaves ALOE.    If the tree has been changed since the last .WRITE 
command, the user is warned and given a chance to abort the command. 

A.6. Display Manipulation 

Display Tree 

.DISPLAY  (ti) 
The screen is cleared and redisplayed.   Useful when operating system 
messages or other such noise gets displayed in the screen. 

Window Down 

.WDOWN   (twtn) 

Window Left 

.WLEFT   (twta) 

Window Right 

.WRIGHT   (twte) 

Window Up 

.WUP   (twtp) 

Scrolls the tree window down by one half of the window length. 

Scrolls the tree window left by one third of the window width. 

Scrolls the tree window right by one third of the window width. 

Scrolls the tree window up by one half of the window length. 

ii   .'     ">i    »'Hi"» 
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Select Window 

.WINDOW <window-name>   (twtw) 
The selected window is displayed on the screen. The window name can 
be given after the command or to the ALOE prompt. The window must be a 
tree or a clipped window. If it is a tree window, the appropriate context 
switch takes place as if the cursor had been moved there explicitly. 

A.7. Other Commands 

Fork a UNIX Shell 

.1   (tx!) 
Calls the UNIX shell from ALOE. 

Edit 

.EDIT   (txtt) 
Invokes the text editor specified by the shell variable EDITOR, to edit a 
constant, long constant, or text node. Upon return the screen is updated 
to incorporat-j the edited string. 

Set Mode 

.MODE   (txtm) 
Sets the mode to the new value. ALOE first prompts for the name of the 
mode and then for the new value of the mode. 

Set Unparsing Scheme 

.SCHEME <scheme-number>   (txU) 
This is a command to let the user change the current unparsing scheme. 
Takes as argument the number of the unparsing scheme. The scheme 
number can be specified after the command or given to the ALOE prompt 
If the argument is out of range (larger that the largest defined unparsing 
scheme) then scheme zero is used. 
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Appendix B 

Unparsing Scheme Commands 

Each unparsing scheme is a string which has descriptions of the text to be used, tne 

syntactic sugar to be used and the formatting style. The text given in the unparsing scheme 

is displayed as is. Only sequences starting with the "9" or "X" character are treated 

differently. The formatting commands available in unparsing schemes are: 

9n 

9t or 9> 

3< 

9- 

91 

9h 

9b 

9u<:n> 

9u 

9p<n> 

9r<n> 

insert a newline in the output. 

Insert four spaces in the output. 

Go back four characters (stopping at the beginning of the line). 

Increase the indentation level (to take effect at the next "9n"). Every 
indentation is four spaces. 

Decrease the indentation level (to taka effect at the next "9n"). 

Flush left (start next piece of output at left margin of current line). 

Go back one character (provided it is not at the beginning of a line). 

Go back to previous line (undo "9n"). 

Change the current unparsing scheme to <n>. Push the current scheme 
index on a one-level stack. 

Reset unparsing scheme to value of the one-level stack. 

Push marker <n> onto stack. Markers are used to "remember" column 
positions for formatting. They are specially useful when the desired 
formatting depends on the size of identifiers or strings. First marker is 
numbered zero. 

Pop marker <n>. 
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0g<n> Get marker <n>.   Moves the unparsing cursor to the column position 
specified by the marker. 

99 Display an "9" character. 

9% Display a"%" character. 

The way the objects of the nodes are displayed is differed* for terminals and non-terminals. 

Fur terminals, the following unparsing commands are available: 

9c Display value of character constant, string, text, integer, real, boolean, 
user node, or userblanks node. 

9s Display variable name from symbol table. 

The unparsing commands available for non-terminals are: 

9<n> Unparse the <n>th offspring recursively.  Used only for fixed arity nodes 
where the offspring are numbered from one on up. For example, "wh 11 e 
(@l)9+@n929-Gn" specifies that the node should be unparsed starting 
with the string "while (" followed by a recursive invocation of the 
unparser on the first offspring, a ")", a line break, the unparsing of the 
second offspring indented one level, and another line break. The order in 
which the offspring are unparsed can be different from the one specified 
in the abstract syntax. The "n" in "<n>" refers to the abstract syntax 
specification order. Finally, nodes can be hidden (made "non-visible") by 
simply omitting them in the unparsing scheme. 

<pr>90<t>[9q<po>][9e<s>] 
Unparse the list node. Used only for non-terminals that are list nodes. The 
"90" indicates that each element of the list should be unparsed in order. 
The "<pr>" is the prelude string that should be printed before the list is 
unparsed. The string "<t>" is used to separate list elements "{<t>" is 
terminated by either the following "9q" or the end of the unparsing 
scheme). The string "<po>" is the postfix that is printed after the list is 
unparsed. The optional "9e" indicates how the list should be unparsed if 
it is empty {i.e., has no current elements). All of the strings may contain 
text and other unparsing commands. The parts in square brackets are 
optional. If no empty specification is given then nothing will be unparsed 
when     the     list     is     empty. For     example,     the     scheme 
"versions ;9+9n90;9n9q9-9n9nd9e<no versions:»" specifies that 
the list should be unparsed starting with the string "versions:", a line 
break and then the elements of the list separated by a ";" and a new line. 
The list should be terminated by a new line and the word "end" aligned 
with "[versions:]". If the list is empty then it should only unparse the string 
"<no versions:»". 

9x Used only for non-terminals that have filenodes associated with them and 
indicates that the subtree is not "-Jsibie". 
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9z Used in conjunction with "9x" to specify the place where the name of the 
filenode should be placed. 

All the letters after the "9" in unparsing commands may be either upper or lower case. 

Additionally, with one exception, anywhere an "9" can occur a "%" can also be used. The 

exception is that in fixed arity operators, "9<n>" means that the node should be unparsed 

and visited (At., you can stop the cursor there), while "%<n>" means to unparse but not to 

visit the node. In the case of lists it means that no element of the list can be visited. 

= jafeji .'■■■:.■. . .'.,:.■ ^:^::^-; = 
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AppendixC 

ALOE Implementation Environment Routines 

The ALOE implementation environment provides an environment for the implementor of 

action routines and extended commands. It provides a data encapsulation mechanism for the 

internal representation that defines the data structures that are accessible as well as the 

operations that can be perforined on them. These operations provide the facilities for 

inspoction, traversal and modification of the internal tree representation. They guarantee the 

syntactic correctness and integrity of the internal representation. The ALOE implementation 

environment actually provides an operational definition of the internal structure. 

The remainder of this appendix is broken up into logical groups of routines. The 

specification for the routines is given using the GC [Feiler 79] format with the types of the 

parameters specified in the parameter list. A full and detailed explanation of these routines 

can be found in [Medina-Mora 81a]. 

C.1. Tree Manipulation Routines 

This section describes routines that are used to manipulate nodes and subtrees of the tree. 

1nt ismeta(struct tnode »node) 
Check for meta. 

struct tnode *f1ndmeta(struct tnode  «node) 
Find meta. 

struct tnode •chkmake(int opt;struct •thisnodechar  ♦valuestr) 

Validate and make a node. 

struct tnode •chkcopy(struct tnode •source,   •dest;   Int doact) 
Copy a subtree. 

PRECaawO    lAGB BUNC-Ntf IILMfcD 
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struct tnode •delsubstree(struct tnode ♦thisnode) 
Delete a subtree. 

struct tnode •app1yauto(struct tnode »thisnode;1nt doact) 
Automatic application of operators. 

iWalk(struct tnode  *th1snode;   1nt {•proc)()) 
Apply a function to each element of subtree. 

RemA11Metas(struct tnode "list) 
Remove all metas in list. 

char terminal(1nt optype) 
Get type of node. 

int ar1ty(1nt optype) 
Get arity of node. 

char  •opname(int optype) 
Get operator name. 

struct tnode "getsysrootO 
Get system root. 

struct tnode •gatroot() 
Get root of window. 

C.2. List Manipulation Routines 

This section describes routines that are available for the manipulation of variable arity 

nodes (also referred to as list nodes) in ALOE. All these routines report an error "node is not a 

list" and return NIL whenever the pointer passed to it is not a list (or a member of a list when 

the parameter is supposed to be one). 

struct tnode  »addfirst(struct tnode •list) 
Add meta to front of list. 

struct tnode •add1ast(struct tnode »list) 
Add meta to end of list. 

struct listnode »getlist(struct tnode Mist) 
Get list header. 

int 1sHst(struct tnode Mist) 
Check if list. 

int length11st(struct tnode •11st) 
Get length of list. 

 L_ 
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int list1ndex(struct tnode •node) 

Find element index. 

1istwalk(struct tnode *l1st;   int  (•proc)  ()) 
Apply funutlon tolist elements. 

struct tnode »nthlist(struct tnode •list;   1nt n) 
Get nth. element. 

struct Ustnode »search!1st(struot tnode »node) 
Get header element. 

struct listnode *cdr{struct Ustnode  •cell) 
Get next header. 

C.3. Access Control Routines 

This section describes the routines that are provided to control the commands and 

construction capabilities of an ALOE. The basic idea is that there is a stack of bit vectors that 

represent which commands are legal at various levels of the tree. The top of the stack 

indicates the current set of legal commands. The elements of this stack are of type struct 

LegalAction * (pointer to LegalAction structure, the details of the type structure are 

hidden). These elements should be created (by topAction or newAction) and pushed onto 

the stack whenever rights are changed (usually on an ENTRY action call) and popped off the 

stack when they are to be restored (usually on an EXIT action call). 

1n1tAct1on() 
Initialize access stack. 

struct LegalAction  *newActlon() 
Create new access element. 

restrict(char •cmd:   struct LegalAction •curAction) 
Restrict command. 

permit(char •cmd;  struct LegalAction  •curAction) 
Permit command. 

consNOTOK(struct LegalAction •curAction) 
Restrict construction. 

consOK(struct LegalAction "curAction) 
Permit construction. 

pushAction(struct LegalAction  »curAction) 
Push access element onto stack. 
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popAct1on() 
Pop access element. 

struct LegalActlon  *topAct1on() 
Take top access element. 

C.4. Error Reporting Routines 

This section describes routines that help the writer of action routines with interfacing to the 

error rsporting mechanisms provided by ALOE. Errors, warnir.^s, and plain messages are 

queued In a buffer. Upon return from an action routine or an extended command, ALOE will 

display all the messages in order. 

syserror(char •msg) 
indicate a system error. 

sysabort() 
Abort the system. 

9rror(char •msg;   struct tnode •anode) 
Queue an error. 

warn(char •msg;   struct tnode •wnode) 
Queue a warning. 

message(char  •msg;   struct  tnode  •mnode) 
Queue a message. 

int errcntO 
Get error count. 

C.5. Filenode Routines 

This section describes the routines needed to manipulate filenodes (a filenode is often 

referred to as a tnodef). Filenodes are used to "partition" the internal tree into a database of 

separate files. The routines listed here provide all the necessary manipulation of file 

databases. In this section, context is the smallest subtree that the current node is in, where 

the root of the subtree is a FNONTERMINAL (a non-terminal node with a filenode associated 

with it. A context stack is automatically kept by an ALOE. Elements are pushed on to the stack 

as contexts are entered and popped off when they are exited. 

int  istnodef(struct tnode  •node) 
Check for filenode. 
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struct tnodef *curcontext() 
Get current context, 

cntxdirtyO 
Dirty current context. 

struct tnode •getfather(struct tnode *th1snode) 
Get parent. 

struci. tnode •tofath9r(struct tnode •thlsnode) 
Get father, save context. 

struct tnode •getson(stPuct tnode 'thlsnode;   1nt wson) 
Get offspring. 

struct tnode •toson(struct tnode *thisnode;   1nt wson) 
Get offspring, save context. 

struct tnode •getcap(struct Ustnode ♦header) 
Get list element. 

struct tnode •tocar(struct  listnode  'header) 
Get list element, save context. 

struct tnodef 'gettnodef(struct tnode 'thlsnode) 
Get parent of FNONTERMINAL 

struct tnode 'getfson(struct tnodef  'thlsnode) 
Get Offspring of filenode, 

struct tnodef 'findfnode(struct tnode 'node) 
Find filenode above node. 

CheckPoint(struct tnode 'node) 
Checkpoint a subtree. 

C.6. Status Manipulation Routines 

This section describes the routines provided for manipulation of the status fields of tree 

nodes. They may be used by an ALOE impiementor In cases where the status checking 

needed for trees is relatively simple. In other cases, the impiementor should write and use 

more complex status schemes. 

All the routines in this section access the status field by using the tnstat type definition. 

The two fields manipulated are actstat and count. The actstat field can contain three 

values: OK, NOTOK, and UNK. This indicates the current status of the tnode (UNK indicates 

- -■ 
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the status is currently unknown). The count field is the number of offspring of the node that 

have a status of OK. The routines described below manipulate these fields with these 

semantics in mind. 

1n1tstat(struct tnode »node) 
Initialize status. 

statusOK(struct tnode »node) 
Set status OK. 

statusNOTOK(struct tnode »node) 
Set status not OK. 

int checkit(struct tnode •node;  int nsons) 
Check for status. 

C.7. Window Manipulation Routines 

This section describes the re utines needed to manipulate the windows on the screen. 

struct window ♦LkupW1ndow(char •windname) 
Look up window. 

AsgTextWindow(struct window »wind) 
Assign text window. 

AsgTreeW1ndow(struct   window   «wind;    Int   scheme;    struct   tnode   «mode; 
struct tnode *cnode) 
Assign tree window. 

NewTW1ndow(struct tnode ♦rootnode;   Int scheme;   char »wname) 
New tree window. 

struct tnode •RemTW1ndow() 
Release tree window. 

struct window *SetW1ndow(struct window 'wind) 
Set current window. 

RelW1ndow(struct window »wind) 
Release window. 

int setoutw1nd(char *wname;   Integer clear) 
Set output window. 

resetoutwIndX) 
Reset output window. 
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C.8. Miscellaneous Routines 

changedtreaO 
Indicate that the tree has changed. 

struct tnode  *ca11onpath(struct tnode ♦fromnode,   Hnoda) 
Call action routines on path. 
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